Skill of Seasonal Arctic Sea Ice Extent Predictions Using the North American Multimodel Ensemble

K. J. Harnos NOAA/Climate Prediction Center, College Park, and Innovim, LLC, Greenbelt, Maryland

Search for other papers by K. J. Harnos in
Current site
Google Scholar
PubMed
Close
,
M. L’Heureux NOAA/Climate Prediction Center, College Park, Maryland

Search for other papers by M. L’Heureux in
Current site
Google Scholar
PubMed
Close
,
Q. Ding Department of Geography, and Earth Research Institute, University of California, Santa Barbara, Santa Barbara, California

Search for other papers by Q. Ding in
Current site
Google Scholar
PubMed
Close
, and
Q. Zhang NOAA/Climate Prediction Center, College Park, Maryland

Search for other papers by Q. Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous studies have outlined benefits of using multiple model platforms to make seasonal climate predictions. Here, reforecasts from five models included in the North American Multimodel Ensemble (NMME) project are utilized to determine skill in predicting Arctic sea ice extent (SIE) during 1982–2010. Overall, relative to the individual models, the multimodel average results in generally smaller biases and better correlations for predictions of total SIE and year-to-year (Y2Y), linearly, and quadratically detrended variability. Also notable is the increase in error for NMME predictions of total September SIE during the mid-1990s through 2000s. After 2000, observed September SIE is characterized by more significant negative trends and increased Y2Y variance, which suggests that recent sea ice loss is resulting in larger prediction errors. While this tendency is concerning, due to the possibility of models not accurately representing the changing trends in sea ice, the multimodel approach still shows promise in providing more skillful predictions of Arctic SIE over any individual model.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kirstin Harnos, kirstin.harnos@noaa.gov

Abstract

Previous studies have outlined benefits of using multiple model platforms to make seasonal climate predictions. Here, reforecasts from five models included in the North American Multimodel Ensemble (NMME) project are utilized to determine skill in predicting Arctic sea ice extent (SIE) during 1982–2010. Overall, relative to the individual models, the multimodel average results in generally smaller biases and better correlations for predictions of total SIE and year-to-year (Y2Y), linearly, and quadratically detrended variability. Also notable is the increase in error for NMME predictions of total September SIE during the mid-1990s through 2000s. After 2000, observed September SIE is characterized by more significant negative trends and increased Y2Y variance, which suggests that recent sea ice loss is resulting in larger prediction errors. While this tendency is concerning, due to the possibility of models not accurately representing the changing trends in sea ice, the multimodel approach still shows promise in providing more skillful predictions of Arctic SIE over any individual model.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kirstin Harnos, kirstin.harnos@noaa.gov
Save
  • Barnston, A.G., M. K. Tippett, M. Ranganathan, and M. L’Heureux, 2017: Deterministic skill of ENSO predictions from the North American Multimodel Ensemble Climate Dyn., https://doi.org/10.1007/s00382-017-3603-3.

    • Search Google Scholar
    • Export Citation
  • Becker, E., H. M. van den Dool, and Q. Zhang, 2014: Predictability and forecast skill in NMME. J. Climate, 27, 58915906, https://doi.org/10.1175/JCLI-D-13-00597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., K. C. Armour, C. M. Bitz, and E. DeWeaver, 2011: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J. Climate, 24, 231250, https://doi.org/10.1175/2010JCLI3775.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., R. I. Cullather, W. Wang, J. Zhang, and C. M. Bitz, 2015: Model forecast skill and sensitivity to initial conditions in the seasonal Sea Ice Outlook. Geophys. Res. Lett., 42, 80428048, https://doi.org/10.1002/2015GL065860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., and Coauthors, 2017: Multi-model seasonal forecast of Arctic sea-ice: Forecast uncertainty at pan-Arctic and regional scales. Climate Dyn., 49, 13991410, https://doi.org/10.1007/s00382-016-3388-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushuk, M., R. Msadek, M. Winton, G. A. Vecchi, R. Gudgel, A. Rosati, and X. Yang, 2017: Skillful regional prediction of Arctic sea ice on seasonal timescales. Geophys. Res. Lett., 44, 49534964, https://doi.org/10.1002/2017GL073155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally, 1996 (updated yearly): Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, version 1. [1981–2015]. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 19 May 2016, https://doi.org/10.5067/8GQ8LZQVL0VL.

    • Crossref
    • Export Citation
  • Chevallier, M., and D. Salas-Mélia, 2012: The role of sea ice thickness distribution in the Arctic sea ice potential predictability: A diagnostic approach with a coupled GCM. J. Climate, 25, 30253038, https://doi.org/10.1175/JCLI-D-11-00209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevallier, M., D. Salas-Mélia, A. Voldoire, and M. Déqué, 2013: Seasonal forecasts of the pan-Arctic sea ice extent using a GCM-based seasonal prediction system. J. Climate, 26, 60926104, https://doi.org/10.1175/JCLI-D-12-00612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevallier, M., and Coauthors, 2017: Intercomparison of the Arctic sea ice cover in global ocean–sea ice reanalyses from the ORA-IP project. Climate Dyn., 49, 11071136, https://doi.org/10.1007/s00382-016-2985-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collow, T. W., W. Wang, A. Kumar, and J. Zhang, 2015: Improving Arctic sea ice prediction using PIOMAS initial sea ice thickness in a coupled ocean–atmosphere model. Mon. Wea. Rev., 143, 46184630, https://doi.org/10.1175/MWR-D-15-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2000 (updated 2015): Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, version 2 [1981–2015]. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 19 May 2016, https://doi.org/10.5067/J6JQLS9EJ5HU.

    • Crossref
    • Export Citation
  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, https://doi.org/10.1029/2007GL031972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, J. J., E. Hawkins, and S. Tietsche, 2014: Will Arctic sea ice thickness initialization improve seasonal forecast skill? Geophys. Res. Lett., 41, 75667575, https://doi.org/10.1002/2014GL061694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., X. Yang, and M. K. Tippett, 2013: Is unequal weighting significantly better than equal weighting for multi-model forecasting? Quart. J. Roy. Meteor. Soc., 139, 176183, https://doi.org/10.1002/qj.1961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., J. Nattala, and M. K. Tippett, 2014: Skill improvement from increased ensemble size and model diversity. Geophys. Res. Lett., 41, 73317342, https://doi.org/10.1002/2014GL060133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and Coauthors, 2017: Influence of the recent high-latitude atmospheric circulation change on summertime Arctic sea ice. Nat. Climate Change, 7, 289295, https://doi.org/10.1038/nclimate3241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirkson, A., W. J. Merryfield, and A. Monahan, 2017: Impacts of sea ice thickness initialization on seasonal Arctic sea ice predictions. J. Climate, 30, 10011017, https://doi.org/10.1175/JCLI-D-16-0437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fučkar, N. S., V. Guemas, N. C. Johnson, F. Massonnet, and F. J. Doblas-Reyes, 2016: Clusters of interannual sea ice variability in the Northern Hemisphere. Climate Dyn., 47, 15271543, https://doi.org/10.1007/s00382-015-2917-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goessling, H. F., S. Tietsche, J. J. Day, E. Hawkins, and T. Jung, 2016: Predictability of the Arctic sea ice edge. Geophys. Res. Lett., 43, 16421650, https://doi.org/10.1002/2015GL067232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grumbine, R. W., 1996: Automated passive microwave sea ice concentration analysis at NCEP. NCEP Ocean Modeling Branch Tech. Note 120, 13 pp., http://polar.ncep.noaa.gov/seaice/icegroup.shtml.

  • Guemas, V., and Coauthors, 2016: A review on Arctic sea ice predictability and prediction on seasonal-to-decadal timescales. Quart. J. Roy. Meteor. Soc., 142, 546561, https://doi.org/10.1002/qj.2401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., F. J. Doblas-Reyes, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus, 57A, 219233, https://doi.org/10.1111/j.1600-0870.2005.00103.x.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., D. A. Bailey, and S. Vavrus, 2011: Inherent sea ice predictability in the rapidly changing Arctic environment of the Community Climate System Model, version 3. Climate Dyn., 36, 12391253, https://doi.org/10.1007/s00382-010-0792-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Infanti, J. M., and B. P. Kirtman, 2016: Prediction and predictability of land and atmosphere initialized CCSM4 climate forecasts over North America. J. Geophys. Res., 121, 12 69012 701, https://doi.org/10.1002/2016JD024932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jahn, A., and Coauthors, 2012: Late twentieth-century simulation of Arctic sea ice and ocean properties in the CCSM4. J. Climate, 25, 14311452, https://doi.org/10.1175/JCLI-D-11-00201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, L., and Coauthors, 2015: Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Climate, 28, 20442062, https://doi.org/10.1175/JCLI-D-14-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American Multi-Model Ensemble (NMME): Phase-1 seasonal to interannual prediction; phase-2 toward developing intra-seasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, https://doi.org/10.1175/BAMS-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., A. Kumar, G. D. Bell, M. S. Halpert, and R. W. Higgins, 2008: Role of the Pacific–North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophys. Res. Lett., 35, L20701, https://doi.org/10.1029/2008GL035205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., and A. Schweiger, 2015: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere, 9, 269283, https://doi.org/10.5194/tc-9-269-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., J. Zhang, A. J. Schweiger, and M. A. Steele, 2008: Seasonal predictions of ice extent in the Arctic Ocean. J. Geophys. Res., 113, C02023, https://doi.org/10.1029/2007JC004259.

    • Search Google Scholar
    • Export Citation
  • Merryfield, M. J., W.-S. Lee, G. J. Boer, V. V. Kharin, J. F. Scinocca, G. M. Flato, R. S. Ajayamohan, and J. C. Fyfe, 2013a: The Canadian Seasonal to Interannual Prediction System. Part I: Models and initialization. Mon. Wea. Rev., 141, 29102945, https://doi.org/10.1175/MWR-D-12-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merryfield, M. J., W.-S. Lee, W. Wang, and A. Kumar, 2013b: Multi-system seasonal predictions of Arctic sea ice. Geophys. Res. Lett., 40, 15511556, https://doi.org/10.1002/grl.50317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Msadek, R., G. A. Vecchi, M. Winston, and R. G. Gudgel, 2014: Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophys. Res. Lett., 41, 52085215, https://doi.org/10.1002/2014GL060799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notz, D., 2014: Sea-ice extent and its trend provide limited metrics of model performance. Cryosphere, 8, 229243, https://doi.org/10.5194/tc-8-229-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2014: Global sea ice coverage from satellite data: Annual cycle and 35-yr trends. J. Climate, 27, 93779382, https://doi.org/10.1175/JCLI-D-14-00605.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and J. Stroeve, 2015: Arctic sea ice trends, variability, and implications for seasonal ice forecasting. Philos. Trans. Roy. Soc., 373A, 20140159, https://doi.org/10.1098/rsta.2014.0159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. C. Fyfe, G. M. Flato, V. V. Kharin, and W. J. Merryfield, 2013: Seasonal forecast skill of Arctic sea ice area in dynamical forecast system. Geophys. Res. Lett., 40, 529534, https://doi.org/10.1002/grl.50129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., M. C. Reader, G. M. Flato, W. J. Merryfield, and A. Tivy, 2016: Skillful seasonal forecasts of Arctic sea ice retreat and advance dates in a dynamical forecast system. Geophys. Res. Lett., 43, 12 45712 465, https://doi.org/10.1002/2016GL071396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier, 2012: Trends in Arctic sea ice extent for CMIP5, CMIP3, and observations. Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., L. C. Hamilton, C. M. Bitz, and E. Blanchard-Wrigglesworth, 2014: Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008–2013. Geophys. Res. Lett., 41, 24112418, https://doi.org/10.1002/2014GL059388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E. and Jahn, 2015: Influence of internal variability on Arctic sea-ice trends. Nat. Climate Change, 5, 8689, https://doi.org/10.1038/nclimate2483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., M. Ranganathan, M. L’Heureux, A. G. Barnston, and T. DelSole, 2017: Assessing probabilistic predictions of ENSO phase and intensity from the North American Multimodel Ensemble. Climate Dyn., https://doi.org/10.1007/s00382-017-3721-y.

    • Search Google Scholar
    • Export Citation
  • van den Dool, H., 2006: Empirical Methods in Short-Term Climate Prediction. Oxford University Press, 240 pp.

    • Crossref
    • Export Citation
  • Walsh, J. E., 1980: Empirical orthogonal functions and the statistical predictability of sea ice extent. Sea Ice Processes and Models, R. S. Pritchard, Ed., University of Washington Press, 373–384.

  • Wang, W., M. Chen, and A. Kumar, 2013: Seasonal prediction of Arctic sea ice extent from a coupled dynamical forecast system. Mon. Wea. Rev., 141, 13751394, https://doi.org/10.1175/MWR-D-12-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wettstein, J. J., and C. Deser, 2014: Internal variability in projections of twenty-first-century Arctic sea ice loss: Role of the large-scale atmospheric circulation. J. Climate, 27, 527550, https://doi.org/10.1175/JCLI-D-12-00839.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 896 451 59
PDF Downloads 464 79 19