The Sensitivity of Land–Atmosphere Coupling to Modern Agriculture in the Northern Midlatitudes

Sonali Shukla McDermid Department of Environmental Studies, New York University, New York, New York
NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Sonali Shukla McDermid in
Current site
Google Scholar
PubMed
Close
,
Carlo Montes NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Carlo Montes in
Current site
Google Scholar
PubMed
Close
,
Benjamin I. Cook NASA Goddard Institute for Space Studies, New York, New York
Center for Climate Systems Research, Columbia University, New York, New York

Search for other papers by Benjamin I. Cook in
Current site
Google Scholar
PubMed
Close
,
Michael J. Puma NASA Goddard Institute for Space Studies, New York, New York
Center for Climate Systems Research, Columbia University, New York, New York
Center for Climate and Life, Columbia University, New York, New York

Search for other papers by Michael J. Puma in
Current site
Google Scholar
PubMed
Close
,
Nancy Y. Kiang NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Nancy Y. Kiang in
Current site
Google Scholar
PubMed
Close
, and
Igor Aleinov Center for Climate Systems Research, Columbia University, New York, New York
NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Igor Aleinov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Modern agricultural land cover and management are important as regional climate forcings. Previous work has shown that land cover change can significantly impact key climate variables, including turbulent fluxes, precipitation, and surface temperature. However, fewer studies have investigated how intensive crop management can impact background climate conditions, such as the strength of land–atmosphere coupling and evaporative regime. We conduct sensitivity experiments using a state-of-the-art climate model with modified vegetation characteristics to represent modern crop cover and management, using observed crop-specific leaf area indexes and calendars. We quantify changes in land–atmosphere interactions and climate over intensively cultivated regions situated at transitions between moisture- and energy-limited conditions. Results show that modern intensive agriculture has significant and geographically varying impacts on regional evaporative regimes and background climate conditions. Over the northern Great Plains, modern crop intensity increases the model simulated precipitation and soil moisture, weakening hydrologic coupling by increasing surface water availability and reducing moisture limits on evapotranspiration. In the U.S. Midwest, higher growing season evapotranspiration, coupled with winter and spring rainfall declines, reduces regional soil moisture, while crop albedo changes also reduce net surface radiation. This results overall in reduced dependency of regional surface temperature on latent heat fluxes. In central Asia, a combination of reduced net surface energy and enhanced pre–growing season precipitation amplify the energy-limited evaporative regime. These results highlight the need for improved representations of agriculture in global climate models to better account for regional climate impacts and interactions with other anthropogenic forcings.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0799.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sonali Shukla McDermid, sps246@nyu.edu

Abstract

Modern agricultural land cover and management are important as regional climate forcings. Previous work has shown that land cover change can significantly impact key climate variables, including turbulent fluxes, precipitation, and surface temperature. However, fewer studies have investigated how intensive crop management can impact background climate conditions, such as the strength of land–atmosphere coupling and evaporative regime. We conduct sensitivity experiments using a state-of-the-art climate model with modified vegetation characteristics to represent modern crop cover and management, using observed crop-specific leaf area indexes and calendars. We quantify changes in land–atmosphere interactions and climate over intensively cultivated regions situated at transitions between moisture- and energy-limited conditions. Results show that modern intensive agriculture has significant and geographically varying impacts on regional evaporative regimes and background climate conditions. Over the northern Great Plains, modern crop intensity increases the model simulated precipitation and soil moisture, weakening hydrologic coupling by increasing surface water availability and reducing moisture limits on evapotranspiration. In the U.S. Midwest, higher growing season evapotranspiration, coupled with winter and spring rainfall declines, reduces regional soil moisture, while crop albedo changes also reduce net surface radiation. This results overall in reduced dependency of regional surface temperature on latent heat fluxes. In central Asia, a combination of reduced net surface energy and enhanced pre–growing season precipitation amplify the energy-limited evaporative regime. These results highlight the need for improved representations of agriculture in global climate models to better account for regional climate impacts and interactions with other anthropogenic forcings.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0799.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sonali Shukla McDermid, sps246@nyu.edu

Supplementary Materials

    • Supplemental Materials (ZIP 792.38 KB)
Save
  • Abramopoulos, F., C. Rosenzweig, and B. Choudhury, 1988: Improved ground hydrology calculations for global climate models (GCMs): Soil water movement and evapotranspiration. J. Climate, 1, 921941, https://doi.org/10.1175/1520-0442(1988)001<0921:IGHCFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alessandri, A., and A. Navarra, 2008: On the coupling between vegetation and rainfall inter-annual anomalies: Possible contributions to seasonal rainfall predictability over land areas. Geophys. Res. Lett., 35, L02718, https://doi.org/10.1029/2007GL032415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alter, R. E., Y. Fan, B. R. Lintner, and C. P. Weaver, 2015: Observational evidence that Great Plains irrigation has enhanced summer precipitation intensity and totals in the Midwestern United States. J. Hydrometeor., 16, 17171735, https://doi.org/10.1175/JHM-D-14-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alter, R. E., H. C. Douglas, J. M. Winter, and E. A. B. Eltahir, 2017: Twentieth century regional climate change in the central United States attributed to agricultural intensification. Geophys. Res. Lett., 45, 15861594, https://doi.org/10.1002/2017GL075604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonfils, C., and D. Lobell, 2007: Empirical evidence for a recent slowdown in irrigation-induced cooling. Proc. Natl. Acad. Sci. USA, 104, 13 58213 587, https://doi.org/10.1073/pnas.0700144104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., S. P. Shukla, M. J. Puma, and L. S. Nazarenko, 2014: Irrigation as an historical climate forcing. Climate Dyn., 44, 17151730, https://doi.org/10.1007/s00382-014-2204-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Noblet-Ducoudré, N., and Coauthors, 2012: Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: Results from the first set of LUCID experiments. J. Climate, 25, 32613281, https://doi.org/10.1175/JCLI-D-11-00338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., 2009: Influence of modern land cover on the climate of the United States. Climate Dyn., 33, 945958, https://doi.org/10.1007/s00382-009-0566-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki, 2006: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 13811397, https://doi.org/10.1175/BAMS-87-10-1381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erisman, J. W., M. A. Sutton, J. Galloway, Z. Klimont, and W. Winiwarter, 2008: How a century of ammonia synthesis changed the world. Nat. Geosci., 1, 636639, https://doi.org/10.1038/ngeo325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organisation. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foley, J. A., and Coauthors, 2011: Solutions for a cultivated planet. Nature, 478, 337342, https://doi.org/10.1038/nature10452.

  • Friedl, M. A., D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, and X. Huang, 2010: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ., 114, 168182, https://doi.org/10.1016/j.rse.2009.08.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friend, A. D., and N. Y. Kiang, 2005: Land surface model development for the GISS GCM: Effects of improved canopy physiology on simulated climate. J. Climate, 18, 28832902, https://doi.org/10.1175/JCLI3425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gameda, S., B. Qian, C. A. Campbell, and R. L. Desjardins, 2007: Climatic trends associated with summerfallow in the Canadian Prairies. Agric. For. Meteor., 142, 170185, https://doi.org/10.1016/j.agrformet.2006.03.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, J., 2010: MODIS observed impacts of intensive agriculture on surface temperature in the southern Great Plains. Int. J. Climatol., 30, 19942003, https://doi.org/10.1002/joc.2093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgescu, M., D. B. Lobell, and C. B. Field, 2011: Direct climate effects of perennial bioenergy crops in the United States. Proc. Natl. Acad. Sci. USA, 108, 43074312, https://doi.org/10.1073/pnas.1008779108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, J. M., S. Frolking, E. A. Kort, D. K. Ray, C. J. Kucharik, N. Ramankutty, and M. A. Friedl, 2014: Direct human influence on atmospheric CO2 seasonality from increased cropland productivity. Nature, 515, 398401, https://doi.org/10.1038/nature13957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis, 1983: Efficient three-dimensional global models for climate studies: Models I and II. Mon. Wea. Rev., 111, 609662, https://doi.org/10.1175/1520-0493(1983)111<0609:ETDGMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsch, A. L., A. J. Pitman, and J. Kala, 2014: The role of land cover change in modulating the soil moisture–temperature land–atmosphere coupling strength over Australia. Geophys. Res. Lett., 41, 58835890, https://doi.org/10.1002/2014GL061179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsch, A. L., A. J. Pitman, J. Kala, R. Lorenz, and M.G. Donat, 2015: Modulation of land-use change impacts on temperature extremes via land–atmosphere coupling over Australia. Earth Interact., 19, https://doi.org/10.1175/EI-D-15-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsch, A. L., M. Wilhelm, E. L. Davin, W. Thiery, and S. I. Seneviratne, 2017: Can climate-effective land management reduce regional warming? J. Geophys. Res., 122, 22692288, https://doi.org/10.1002/2016JD026125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., and Coauthors, 2011: Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117161, https://doi.org/10.1007/s10584-011-0153-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y., P. R. Moorcroft, I. Aleinov, M. J. Puma, and N. Y. Kiang, 2015: Variability of phenology and fluxes of water and carbon with observed and simulated soil moisture in the Ent Terrestrial Biosphere Model (Ent TBM version 1.0.1.0.0). Geosci. Model Dev., 8, 38373865, https://doi.org/10.5194/gmd-8-3837-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Realistic initialization of land surface states: Impacts on subseasonal forecast skill. J. Hydrometeor., 5, 10491063, https://doi.org/10.1175/JHM-387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, https://doi.org/10.1175/JHM510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., S. D. Schubert, and M. J. Suarez, 2009: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 33313341, https://doi.org/10.1175/2008JCLI2718.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lejeune, Q., S. I. Seneviratne, and E. L. Davin, 2017: Historical land-cover change impacts on climate: Comparative assessment of LUCID and CMIP5 multimodel experiments. J. Climate, 30, 14391459, https://doi.org/10.1175/JCLI-D-16-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luyssaert, S., and Coauthors, 2014: Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Climate Change, 4, 389393, https://doi.org/10.1038/nclimate2196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmood, R., and Coauthors, 2014: Land cover changes and their biogeophysical effects on climate. Int. J. Climatol., 34, 929953, https://doi.org/10.1002/joc.3736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, E., 1983: Global vegetation and land use: New high-resolution data bases for climate studies. J. Climate Appl. Meteor., 22, 474487, https://doi.org/10.1175/1520-0450(1983)022<0474:GVALUN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDermid, S. S., L. O. Mearns, and A. C. Ruane, 2017: Representing agriculture in Earth system models: Approaches and priorities for development. J. Adv. Model. Earth Syst., 9, 22302265, https://doi.org/10.1002/2016MS000749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. L., and Coauthors, 2014: CMIP5 historical simulations (1850–2012) with GISSModelE2. J. Adv. Model. Earth Syst., 6, 441477, https://doi.org/10.1002/2013MS000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monfreda, C., N. Ramankutty, and J. A. Foley, 2008: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem. Cycles, 22, GB1022, https://doi.org/10.1029/2007GB002947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, N. D., J. S. Gerber, M. Johnston, D. K. Ray, N. Ramankutty, and J. A. Foley, 2012: Closing yield gaps through nutrient and water management. Nature, 490, 254257, https://doi.org/10.1038/nature11420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, N. D., E. E. Butler, K. A. McKinnon, A. Rhines, M. Tingley, N. M. Holbrook, and P. Huybers, 2016: Cooling of U.S. Midwest summer temperature extremes from cropland intensification. Nat. Climate Change, 6, 317322, https://doi.org/10.1038/nclimate2825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, N. D., A. Rhines, E. E. Butler, D. K. Ray, S. Siebert, N. M. Holbrook, and P. Huybers, 2017: Global relationships between cropland intensification and summer temperature extremes over the last 50 years. J. Climate, 30, 75057528, https://doi.org/10.1175/JCLI-D-17-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nair, U. S., Y. Wu, J. Kala, T. J. Lyons, R. A. Pielke Sr., and J. M. Hacker, 2011: The role of land use change on the development and evolution of the west coast trough, convective clouds, and precipitation in southwest Australia. J. Geophys. Res., 116, D07103, https://doi.org/10.1029/2010JD014950.

    • Search Google Scholar
    • Export Citation
  • Nazarenko, L., and Coauthors, 2015: Future climate change under RCP emission scenarios with GISS ModelE2. J. Adv. Model. Earth Syst., 7, 244267, https://doi.org/10.1002/2014MS000403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Partridge, T. F., J. M. Winter, E. C. Osterberg, D. W. Hyndman, A. D. Kendall, and F. J. Magilligan, 2018: Spatially distinct seasonal patterns and forcings of the U.S. warming hole. Geophys. Res. Lett., 45, 20552063, https://doi.org/10.1002/2017GL076463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pei, L., N. Moore, S. Zhong, A. D. Kendall, Z. Gao, and D. W. Hyndman, 2016: Effects of irrigation on summer precipitation over the United States. J. Climate, 29, 35413558, https://doi.org/10.1175/JCLI-D-15-0337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R., Jr., G. Prins, S. Rayner, and D. Sarewitz, 2007: Climate change 2007: Lifting the taboo on adaptation. Nature, 445, 597598, https://doi.org/10.1038/445597a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R., Jr., and Coauthors, 2011: Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev.: Climate Change, 2, 828850, https://doi.org/10.1002/wcc.144.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Coauthors, 2009: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett., 36, L14814, https://doi.org/10.1029/2009GL039076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., F. B. Avila, G. Abramowitz, Y. P. Wang, S. J. Phipps, and N. de Noblet-Ducoudré, 2011: Importance of background climate in determining impact of land-cover change on regional climate. Nat. Climate Change, 1, 472475, https://doi.org/10.1038/nclimate1294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pongratz, J., C. Reick, T. Raddatz, and M. Claussen, 2008: Biogeophysical effects of anthropogenic land cover change during the last millennium. 1 p., accessed 8 June 2016, http://static.egu.eu/media/awards/union-osp-award/2008/julia_pongratz.pdf.

  • Raddatz, R. L., 2007: Evidence for the influence of agriculture on weather and climate through the transformation and management of vegetation: Illustrated by examples from the Canadian Prairies. Agric. For. Meteor., 142, 186202, https://doi.org/10.1016/j.agrformet.2006.08.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., J. A. Foley, J. Norman, and K. McSweeney, 2002: The global distribution of cultivable lands: Current patterns and sensitivity to possible climate change. Global Ecol. Biogeogr., 11, 377392, https://doi.org/10.1046/j.1466-822x.2002.00294.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., C. Delire, and P. Snyder, 2006: Feedbacks between agriculture and climate: An illustration of the potential unintended consequences of human land use activities. Global Planet. Change, 54, 7993, https://doi.org/10.1016/j.gloplacha.2005.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, D. K., N. D. Mueller, P. C. West, and J. A. Foley, 2013: Yield trends are insufficient to double global crop production by 2050. PLOS ONE, 8, e66428, https://doi.org/10.1371/journal.pone.0066428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, D. K., J. S. Gerber, G. K. MacDonald, and P. C. West, 2015: Climate variation explains a third of global crop yield variability. Nat. Commun., 6, 5989, https://doi.org/10.1038/ncomms6989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenzweig, C., and F. Abramopoulos, 1997: Land-surface model development for the GISS GCM. J. Climate, 10, 20402054, https://doi.org/10.1175/1520-0442(1997)010<2040:LSMDFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryu, Y., D. D. Baldocchi, S. Ma, and T. Hehn, 2008: Interannual variability of evapotranspiration and energy exchange over an annual grassland in California. J. Geophys. Res., 113, D09104, https://doi.org/10.1029/2007JD009263.

    • Search Google Scholar
    • Export Citation
  • Sacks, W. J., D. Deryng, J. A. Foley, and N. Ramankutty, 2010: Crop planting dates: An analysis of global patterns. Global Ecol. Biogeogr., 19, 607620, https://doi.org/10.1111/j.1466-8238.2010.00551.x.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, 141184, https://doi.org/10.1002/2013MS000265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209, https://doi.org/10.1038/nature05095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2018: Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci., 11, 8896, https://doi.org/10.1038/s41561-017-0057-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simard, M., N. Pinto, J. B. Fisher, and A. Baccini, 2011: Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci., 116, G04021, https://doi.org/10.1029/2011JG001708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P., and Coauthors, 2014: Agriculture, Forestry and Other Land Use (AFOLU). Climate Change 2014: Mitigation of Climate Change, O. Edenhofer et al., Eds., Cambridge University Press, 811–922.

  • Spitters, C. J. T., H. A. J. M. Toussaint, and J. Goudriaan, 1986: Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis Part I. Components of incoming radiation. Agric. For. Meteor., 38, 217229, https://doi.org/10.1016/0168-1923(86)90060-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thiery, W., E. L. Davin, D. M. Lawrence, A. L. Hirsch, M. Hauser, and S. I. Seneviratne, 2017: Present-day irrigation mitigates heat extremes. J. Geophys. Res., 122, 14031422, https://doi.org/10.1002/2016JD025740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Coauthors, 2002a: Multiscale analysis and validation of the MODIS LAI product: I. Uncertainty assessment. Remote Sens. Environ., 83, 414430, https://doi.org/10.1016/S0034-4257(02)00047-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Coauthors, 2002b: Multiscale analysis and validation of the MODIS LAI product: II. Sampling strategy. Remote Sens. Environ., 83, 431441, https://doi.org/10.1016/S0034-4257(02)00058-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tubiello, F. N., and Coauthors, 2014: Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks. FAO Statistics Division Working Paper Series ESS/14-02, Food and Agriculture Organization, 75 pp., http://www.fao.org/docrep/019/i3671e/i3671e.pdf.

  • USDA, 2014: 2013 Census of Agriculture: Farm and Ranch Irrigation Survey. USDA, 266 pp., https://www.nass.usda.gov/Publications/AgCensus/2012/Online_Resources/Farm_and_Ranch_Irrigation_Survey/.

  • Yang, W., and Coauthors, 2006: MODIS leaf area index products: from validation to algorithm improvement. IEEE Trans. Geosci. Remote Sens., 44, 18851898, https://doi.org/10.1109/TGRS.2006.871215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, H., Y. Dai, Z. Xiao, D. Ji, and W. Shangguan, 2011: Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling. Remote Sens. Environ., 115, 11711187, https://doi.org/10.1016/j.rse.2011.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, N., F. Zhao, G. J. Collatz, E. Kalnay, R. J. Salawitch, T. O. West, and L. Guanter, 2014: Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude. Nature, 515, 394397, https://doi.org/10.1038/nature13893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, X., and Coauthors, 2013: The Global Land Surface Satellite (GLASS) remote sensing data processing system and products. Remote Sens., 5, 24362450, https://doi.org/10.3390/rs5052436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and Coauthors, 2013: Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens., 5, 927948, https://doi.org/10.3390/rs5020927.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., and H. von Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336351, https://doi.org/10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4253 2620 120
PDF Downloads 883 164 12