Heterogeneity of Scaling of the Observed Global Temperature Data

Suzana Blesić Department of Environmental Sciences, Informatics and Statistics, Ca’Foscari University of Venice, Mestre-Venice, Italy

Search for other papers by Suzana Blesić in
Current site
Google Scholar
PubMed
Close
,
Davide Zanchettin Department of Environmental Sciences, Informatics and Statistics, Ca’Foscari University of Venice, Mestre-Venice, Italy

Search for other papers by Davide Zanchettin in
Current site
Google Scholar
PubMed
Close
, and
Angelo Rubino Department of Environmental Sciences, Informatics and Statistics, Ca’Foscari University of Venice, Mestre-Venice, Italy

Search for other papers by Angelo Rubino in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We investigated the scaling properties of two datasets of the observed near-surface global temperature data anomalies: the Met Office and the University of East Anglia Climatic Research Unit HadCRUT4 dataset and the NASA GISS Land–Ocean Temperature Index (LOTI) dataset. We used detrended fluctuation analysis of second-order (DFA2) and wavelet-based spectral (WTS) analysis to investigate and quantify the global pattern of scaling in two datasets and to better understand cyclic behavior as a possible underlying cause of the observed forms of scaling. We found that, excluding polar and parts of subpolar regions because of their substantial data inhomogeneity, the global temperature pattern is long-range autocorrelated. Our results show a remarkable heterogeneity in the long-range dynamics of the global temperature anomalies in both datasets. This finding is in agreement with previous studies. We additionally studied the DFA2 and the WTS behavior of the local station temperature anomalies and satellite-based temperature estimates and found that the observed diversity of global scaling can be attributed both to the intrinsic variability of data and to the methodology-induced variations that arise from deriving the global temperature gridded data from the original local sources. Finally, we found differences in global temperature scaling patterns of the two datasets and showed instances where spurious scaling is introduced in the global datasets through a spatial infilling procedure or the optimization of integrated satellite records.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0823.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Suzana Blesić, suzana.blesic@unive.it

Abstract

We investigated the scaling properties of two datasets of the observed near-surface global temperature data anomalies: the Met Office and the University of East Anglia Climatic Research Unit HadCRUT4 dataset and the NASA GISS Land–Ocean Temperature Index (LOTI) dataset. We used detrended fluctuation analysis of second-order (DFA2) and wavelet-based spectral (WTS) analysis to investigate and quantify the global pattern of scaling in two datasets and to better understand cyclic behavior as a possible underlying cause of the observed forms of scaling. We found that, excluding polar and parts of subpolar regions because of their substantial data inhomogeneity, the global temperature pattern is long-range autocorrelated. Our results show a remarkable heterogeneity in the long-range dynamics of the global temperature anomalies in both datasets. This finding is in agreement with previous studies. We additionally studied the DFA2 and the WTS behavior of the local station temperature anomalies and satellite-based temperature estimates and found that the observed diversity of global scaling can be attributed both to the intrinsic variability of data and to the methodology-induced variations that arise from deriving the global temperature gridded data from the original local sources. Finally, we found differences in global temperature scaling patterns of the two datasets and showed instances where spurious scaling is introduced in the global datasets through a spatial infilling procedure or the optimization of integrated satellite records.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0823.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Suzana Blesić, suzana.blesic@unive.it

Supplementary Materials

    • Supplemental Materials (PDF 847.18 KB)
Save
  • Alexandersson, H., 1986: A homogeneity test applied to precipitation data. Int. J. Climatol., 6, 661675, https://doi.org/10.1002/joc.3370060607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alvarez-Ramirez, J., J. Alvarez, L. Dagdug, E. Rodriguez, and J. C. Echeverria, 2008a: Long-term memory dynamics of continental and oceanic monthly temperatures in the recent 125 years. Physica A, 387, 36293640, https://doi.org/10.1016/j.physa.2008.02.051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alvarez-Ramirez, J., J. C. Echeverria, and E. Rodriguez, 2008b: Performance of a high-dimensional R/S method for Hurst exponent estimation. Physica A, 387, 64526462, https://doi.org/10.1016/j.physa.2008.08.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashkenazy, Y., D. R. Baker, H. Gildor, and S. Havlin, 2003: Nonlinearity and multifractality of climate change in the past 420,000 years. Geophys. Res. Lett., 30, 2146, https://doi.org/10.1029/2003GL018099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banzon, V., T. M. Smith, T. M. Chin, C. Liu, and W. Hankins, 2016: A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data, 8, 165176, https://doi.org/10.5194/essd-8-165-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bashan, A., R. Bartsch, J. W. Kantelhardt, and S. Havlin, 2008: Comparison of detrending methods for fluctuation analysis. Physica A, 387, 50805090, https://doi.org/10.1016/j.physa.2008.04.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berezin, Y., A. Gozolchiani, O. Guez, and S. Havlin, 2012: Stability of climate networks with time. Sci. Rep., 2, 666, https://doi.org/10.1038/srep00666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blesić, S., S. Milošević, D. Stratimirović, and M. Ljubisavljević, 1999: Detrended fluctuation analysis of time series of a firing fusimotor neuron. Physica A, 268, 275282, https://doi.org/10.1016/S0378-4371(99)00110-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blesić, S., S. Milošević, D. Stratimirović, and M. Ljubisavljević, 2003: Detecting long-range correlations in time series of neuronal discharges. Physica A, 330, 391399, https://doi.org/10.1016/j.physa.2003.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bračič, M., and A. Stefanovska, 1998: Wavelet-based analysis of human blood-flow dynamics. Bull. Math. Biol., 60, 919935, https://doi.org/10.1006/bulm.1998.0047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buldyrev, S. V., A. L. Goldberger, S. Havlin, R. N. Mantegna, M. E. Matsa, C. K. Peng, M. Simons, and H. E. Stanley, 1995: Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis. Phys. Rev. E, 51, 50845091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunde, A., and S. Havlin, 2002: Power-law persistence in the atmosphere and in the oceans. Physica A, 314, 1524, https://doi.org/10.1016/S0378-4371(02)01050-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunde, A., and S. Lennartz, 2012: Long-term correlations in earth sciences. Acta Geophysica, 60, 562588, https://doi.org/10.2478/s11600-012-0034-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunde, A., J. F. Eichner, S. Havlin, E. Koscielny-Bunde, H. J. Schellnhuber, and D. Vyushin, 2004: Comment on “Scaling of atmosphere and ocean temperature correlations in observations and climate models.” Phys. Rev. Lett., 92, 039801, https://doi.org/10.1103/PhysRevLett.92.039801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunde, A., M. I. Bogachev, and S. Lennartz, 2013a: Precipitation and river flow: Long-term memory and predictability of extreme events. Extreme Events and Natural Hazards: The Complexity Perspective, Geophys. Monogr., Vol. 196, Amer. Geophys. Union, 139–152, https://doi.org/10.1029/2011GM001112.

    • Crossref
    • Export Citation
  • Bunde, A., U. Büntgen, J. Ludescher, J. Luterbacher, and H. Von Storch, 2013b: Is there memory in precipitation? Nat. Climate Change, 3, 174175, https://doi.org/10.1038/nclimate1830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M., A. A. Tsonis, C. Jones, H. R. Rocha, and P. S. Polito, 2007: Anti-persistence in the global temperature anomaly field. Nonlinear Processes Geophys., 14, 723733, https://doi.org/10.5194/npg-14-723-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., P. C. Ivanov, K. Hu, and H. E. Stanley, 2002: Effect of nonstationarities on detrended fluctuation analysis. Phys. Rev. E, 65, 041107, https://doi.org/10.1103/PhysRevE.65.041107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., K. Hu, P. Carpena, P. Bernaola-Galvan, H. E. Stanley, and P. C. Ivanov, 2005: Effect of nonlinear filters on detrended fluctuation analysis. Phys. Rev. E, 71, 011104, https://doi.org/10.1103/PhysRevE.71.011104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christy, J. R., and R. W. Spencer, 2017: Global temperature report archives. Earth System Science Center, University of Alabama in Huntsville, https://www.nsstc.uah.edu/climate/archives.html.

  • Christy, J. R., R. W. Spencer, W. B. Norris, W. D. Braswell, and D. E. Parker, 2003: Error estimates of version 5.0 of MSU–AMSU bulk atmospheric temperatures. J. Atmos. Oceanic Technol., 20, 613629, https://doi.org/10.1175/1520-0426(2003)20<613:EEOVOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and P. D. Sardeshmukh, 2010: Removing ENSO-related variations from the climate record. J. Climate, 23, 19571978, https://doi.org/10.1175/2009JCLI2735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crok, M., B. Verheggen, R. van Dorland, and B. Strengers, 2014: Extended summary of the climate dialogue on long term persistence. ClimateDialogue.org, 21 pp., https://www.mwenb.nl/wp-content/uploads/2014/04/Climatedialogue.org-extended-summary-long-term-persistence.pdf.

  • CRUTEM4 Team, 2017: Met Office Hadley Centre observations datasets: CRUTEM4 data download. Met Office, accessed 5 June 2018, https://www.metoffice.gov.uk/hadobs/crutem4/data/download.html.

  • Eichner, J. F., E. Koscielny-Bunde, A. Bunde, S. Havlin, and H. J. Schellnhuber, 2003: Power-law persistence and trends in the atmosphere: A detailed study of long temperature records. Phys. Rev. E, 68, 046133, https://doi.org/10.1103/PhysRevE.68.046133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., and R. Blender, 2003: Scaling of atmosphere and ocean temperature correlations in observations and climate models. Phys. Rev. Lett., 90, 108501, https://doi.org/10.1103/PhysRevLett.90.108501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., and R. Blender, 2004: Fraedrich and Blender reply. Phys. Rev. Lett., 92, 039802, https://doi.org/10.1103/PhysRevLett.92.039802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., U. Luksch, and R. Blender, 2004: 1/f model for long-time memory of the ocean surface temperature. Phys. Rev. E, 70, 037301, https://doi.org/10.1103/PhysRevE.70.037301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C. L. E., T. Graves, N. W. Watkins, R. B. Gramacy, and C. Hughes, 2012: Robustness of estimators of long-range dependence and self-similarity under non-Gaussianity. Philos. Trans. Roy. Soc., 370A, 12501267, https://doi.org/10.1098/rsta.2011.0349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C. L. E., T. J. O’Kane, J. Berner, P. D. Williams, and V. Lucarini, 2015: Stochastic climate theory and modeling. Wiley Interdiscip. Rev.: Climate Change, 6, 6378, https://doi.org/10.1002/wcc.318.

    • Search Google Scholar
    • Export Citation
  • Freeman, E., and Coauthors, 2017: ICOADS release 3.0: A major update to the historical marine climate record. Int. J. Climatol., 37, 22112232, https://doi.org/10.1002/joc.4775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GHCN Team, 2017: Global Historical Climatology Network (GHCN). NOAA/NCEI, accessed 5 June 2018, https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-ghcn.

  • GISTEMP Team, 2017: GISS Surface Temperature Analysis (GISTEMP). NASA/GISS, accessed 18 September 2017, https://data.giss.nasa.gov/gistemp.

  • Goupillaud, P., A. Grossmann, and J. Morlet, 1984: Cycle-octave and related transforms in seismic signal analysis. Geoexploration, 23, 85102, https://doi.org/10.1016/0016-7142(84)90025-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Govindan, R. B., A. Bunde, and S. Havlin, 2003: Volatility in atmospheric temperature variability. Physica A, 318, 529536, https://doi.org/10.1016/S0378-4371(02)01552-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graf, H. F., and D. Zanchettin, 2012: Central Pacific El Niño, the “subtropical bridge,” and Eurasian climate. J. Geophys. Res., 117, D01102, https://doi.org/10.1029/2011JD016493.

    • Search Google Scholar
    • Export Citation
  • Grossmann, A., and J. Morlet, 1984: Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal., 15, 723736, https://doi.org/10.1137/0515056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345.

  • Hasselmann, K., 1976: Stochastic climate models. Part I: Theory. Tellus, 28, 473485, https://doi.org/10.3402/tellusa.v28i6.11316.

  • Höll, M., and H. Kantz, 2015: The relationship between the detrended fluctuation analysis and the autocorrelation function of a signal. Eur. Phys. J. B, 88, 327, https://doi.org/10.1140/epjb/e2015-60721-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Höll, M., H. Kantz, and Y. Zhou, 2016: Detrended fluctuation analysis and the difference between external drifts and intrinsic diffusionlike nonstationarity. Phys. Rev. E, 94, 042201, https://doi.org/10.1103/PhysRevE.94.042201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., P. C. Ivanov, Z. Chen, P. Carpena, and H. E. Stanley, 2001: Effect of trends on detrended fluctuation analysis. Phys. Rev. E, 64, 011114, https://doi.org/10.1103/PhysRevE.64.011114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2016: Further exploring and quantifying uncertainties for Extended Reconstructed Sea Surface Temperature (ERSST) version 4 (v4). J. Climate, 29, 31193142, https://doi.org/10.1175/JCLI-D-15-0430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurst, H. E., 1951: Long-term storage capacity of reservoirs. Trans. ASCE, 116, 770799.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Jones, P. D., D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon, and C. P. Morice, 2012: Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res., 117, D05127, https://doi.org/10.1029/2011JD017139.

    • Search Google Scholar
    • Export Citation
  • Kantelhardt, J. W., E. Koscielny-Bunde, H. H. Rego, S. Havlin, and A. Bunde, 2001: Detecting long-range correlations with detrended fluctuation analysis. Physica A, 295, 441454, https://doi.org/10.1016/S0378-4371(01)00144-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantelhardt, J. W., E. Koscielny-Bunde, D. Rybski, P. Braun, A. Bunde, and S. Havlin, 2006: Long-term persistence and multifractality of precipitation and river runoff records. J. Geophys. Res., 111, D01106, https://doi.org/10.1029/2005JD005881.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., R. G. Quayle, and P. Ya. Groisman, 1993: Detecting climate variations and change: New challenges for observing and data management systems. J. Climate, 6, 14811494, https://doi.org/10.1175/1520-0442(1993)006<1481:DCVACN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KNMI Team, 2017: KNMI Climate Explorer: Starting point. KNMI, accessed 5 June 2018, https://climexp.knmi.nl/start.cgi.

  • Koscielny-Bunde, E., J. W. Kantelhardt, P. Braun, A. Bunde, and S. Havlin, 2006: Long-term persistence and multifractality of river runoff records: Detrended fluctuation studies. J. Hydrol., 322, 120137, https://doi.org/10.1016/j.jhydrol.2005.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koutsoyiannis, D., 2003: Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol. Sci. J., 48, 324, https://doi.org/10.1623/hysj.48.1.3.43481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrimore, J. H., M. J. Menne, B. E. Gleason, C. N. Williams, D. B. Wuertz, R. S. Vose, and J. Rennie, 2011: An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J. Geophys. Res., 116, D19121, https://doi.org/10.1029/2011JD016187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lennartz, S., and A. Bunde, 2009: Trend evaluation in records with long-term memory: Application to global warming. Geophys. Res. Lett., 36, L16706, https://doi.org/10.1029/2009GL039516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lennartz, S., and A. Bunde, 2011: Distribution of natural trends in long-term correlated records: A scaling approach. Phys. Rev. E, 84, 021129, https://doi.org/10.1103/PhysRevE.84.021129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A. F., and M. J. McPhaden, 2016: How the July 2014 easterly wind burst gave the 2015–2016 El Niño a head start. Geophys. Res. Lett., 43, 65036510, https://doi.org/10.1002/2016GL069204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lima, C. H., and U. Lall, 2010: Spatial scaling in a changing climate: A hierarchical Bayesian model for non-stationary multi-site annual maximum and monthly streamflow. J. Hydrol., 383, 307318, https://doi.org/10.1016/j.jhydrol.2009.12.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2012: Dynamics of interdecadal climate variability: A historical perspective. J. Climate, 25, 19631995, https://doi.org/10.1175/2011JCLI3980.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livina, V. N., Y. Ashkenazy, A. Bunde, and S. Havlin, 2011: Seasonality effects on nonlinear properties of hydrometeorological records. In Extremis: Disruptive Events and Trends in Climate and Hydrology, J. Kropp and H.-J. Schellnhuber, Eds., Springer, 266–284, https://doi.org/10.1007/978-3-642-14863-7_13.

    • Crossref
    • Export Citation
  • Lovejoy, S., and D. Schertzer, 2013: Low-frequency weather and the emergence of the climate. Extreme Events and Natural Hazards: The Complexity Perspective, Geophys. Monogr., Vol. 196, Amer. Geophys. Union, 231–254, https://doi.org/10.1029/2011GM001087.

    • Crossref
    • Export Citation
  • Lovejoy, S., and C. Varotsos, 2016: Scaling regimes and linear/nonlinear responses of last millennium climate to volcanic and solar forcings. Earth Syst. Dyn., 7, 133150, https://doi.org/10.5194/esd-7-133-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ludescher, J., M. I. Bogachev, J. W. Kantelhardt, A. Y. Schumann, and A. Bunde, 2011: On spurious and corrupted multifractality: The effects of additive noise, short-term memory and periodic trends. Physica A, 390, 24802490, https://doi.org/10.1016/j.physa.2011.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ludescher, J., A. Bunde, C. L. Franzke, and H. J. Schellnhuber, 2016: Long-term persistence enhances uncertainty about anthropogenic warming of Antarctica. Climate Dyn., 46, 263271, https://doi.org/10.1007/s00382-015-2582-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ludescher, J., A. Bunde, and H. J. Schellnhuber, 2017: Statistical significance of seasonal warming/cooling trends. Proc. Natl. Acad. Sci. USA, 114, E2998E3003, https://doi.org/10.1073/pnas.1700838114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, M., Y. Leung, Y. Zhou, and W. Zhang, 2015: Scaling behaviors of global sea surface temperature. J. Climate, 28, 31223132, https://doi.org/10.1175/JCLI-D-13-00743.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Q. D., R. P. Bartsch, P. Bernaola-Galván, M. Yoneyama, and P. C. Ivanov, 2010: Effect of extreme data loss on long-range correlated and anticorrelated signals quantified by detrended fluctuation analysis. Phys. Rev. E, 81, 031101, https://doi.org/10.1103/PhysRevE.81.031101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallat, S., and W. L. Hwang, 1992: Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory, 38, 617643, https://doi.org/10.1109/18.119727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mandelbrot, B. B., 2001: Harold Edwin Hurst. Statisticians of the Centuries, C. C. Heyde et al., Eds., Springer, 335–338, https://doi.org/10.1007/978-1-4613-0179-0_72.

    • Crossref
    • Export Citation
  • Mandelbrot, B. B., and J. R. Wallis, 1968: Noah, Joseph, and operational hydrology. Water Resour. Res., 4, 909918, https://doi.org/10.1029/WR004i005p00909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mandelbrot, B. B., and J. R. Wallis, 1969: Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resour. Res., 5, 967988, https://doi.org/10.1029/WR005i005p00967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markonis, Y., and D. Koutsoyiannis, 2013: Climatic variability over time scales spanning nine orders of magnitude: Connecting Milankovitch cycles with Hurst–Kolmogorov dynamics. Surv. Geophys., 34, 181207, https://doi.org/10.1007/s10712-012-9208-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and C. N. Williams, 2009: Homogenization of temperature series via pairwise comparisons. J. Climate, 22, 17001717, https://doi.org/10.1175/2008JCLI2263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Met Office Hadley Centre, 2010: Met Office Hadley Centre observations datasets. Met Office, accessed 5 June 2018, http://hadobs.metoffice.com/hadcrut3/diagnostics/comparison.html.

  • Milošević, S., S. Blesić, and D. Stratimirović, 2002: Beneficial randomness of signals in a neuronal circuit. Physica A, 314, 4352, https://doi.org/10.1016/S0378-4371(02)01184-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monetti, R. A., S. Havlin, and A. Bunde, 2003: Long-term persistence in the sea surface temperature fluctuations. Physica A, 320, 581589, https://doi.org/10.1016/S0378-4371(02)01662-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Morlet, J., 1983: Sampling theory and wave propagation. Issues in Acoustic Signal—Image Processing and Recognition, C. H. Chen, Ed., NATO ASI Series, Vol. 1, Springer, 233–261, https://doi.org/10.1007/978-3-642-82002-1_12.

    • Crossref
    • Export Citation
  • OISST Team, 2017: Index of /data/sea-surface-temperature-optimum-interpolation/access. NOAA/NCEI, accessed 5 June 2018, https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/access/.

  • Osborn, T. J., and P. D. Jones, 2014: The CRUTEM4 land-surface air temperature data set: Construction, previous versions and dissemination via Google Earth. Earth Syst. Sci. Data, 6, 6168, https://doi.org/10.5194/essd-6-61-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, C. K., S. V. Buldyrev, A. L. Goldberger, S. Havlin, M. Simons, and H. E. Stanley, 1993: Finite-size effects on long-range correlations: Implications for analyzing DNA sequences. Phys. Rev. E, 47, 37303733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, C. K., S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, 1994: Mosaic organization of DNA nucleotides. Phys. Rev. E, 49, 16851689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, C. K., S. Havlin, H. E. Stanley, and A. L. Goldberger, 1995: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos, 5, 82, https://doi.org/10.1063/1.166141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. Matrosova, 2006: Studies of El Niño and interdecadal variability in tropical sea surface temperatures using a nonnormal filter. J. Climate, 19, 57965815, https://doi.org/10.1175/JCLI3951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perrier, V., T. Philipovitch, and C. Basdevant, 1995: Wavelet spectra compared to Fourier spectra. J. Math. Phys., 36, 1506, https://doi.org/10.1063/1.531340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and Coauthors, 1998: Homogeneity adjustments of in situ atmospheric climate data: A review. Int. J. Climatol., 18, 14931517, https://doi.org/10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Press, W. H., 1978: Flicker noises in astronomy and elsewhere. Comments Mod. Phys., 7, 103119.

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodriguez, E., M. Aguilar-Cornejo, R. Femat, and J. Alvarez-Ramirez, 2014: US stock market efficiency over weekly, monthly, quarterly and yearly time scales. Physica A, 413, 554564, https://doi.org/10.1016/j.physa.2014.07.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rust, H. W., O. Mestre, and V. K. Venema, 2008: Fewer jumps, less memory: Homogenized temperature records and long memory. J. Geophys. Res., 113, D19110, https://doi.org/10.1029/2008JD009919.

    • Search Google Scholar
    • Export Citation
  • Rybski, D., A. Bunde, and H. von Storch, 2008: Long-term memory in 1000-year simulated temperature records. J. Geophys. Res., 113, D02106, https://doi.org/10.1029/2007JD008568.

    • Search Google Scholar
    • Export Citation
  • Rypdal, K., 2012: Global temperature response to radiative forcing: Solar cycle versus volcanic eruptions. J. Geophys. Res., 117, D06115, https://doi.org/10.1029/2011JD017283.

    • Search Google Scholar
    • Export Citation
  • Sarvan, D., Đ. Stratimirović, S. Blesić, V. Djurdjevic, V. Miljković, and J. Ajtić, 2017: Dynamics of beryllium-7 specific activity in relation to meteorological variables, tropopause height, teleconnection indices and sunspot number. Physica A, 469, 813823, https://doi.org/10.1016/j.physa.2016.11.040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schertzer, D., and S. Lovejoy, 1987: Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. J. Geophys. Res., 92, 96939714, https://doi.org/10.1029/JD092iD08p09693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schertzer, D., and S. Lovejoy, 1990: Non-Linear Variability in Geophysics: Scaling and Fractals. Springer, 332 pp.

    • Crossref
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanley, H. E., 1999: Scaling, universality, and renormalization: Three pillars of modern critical phenomena. Rev. Mod. Phys., 71, S358, https://doi.org/10.1103/RevModPhys.71.S358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanley, H. E., 2000: Exotic statistical physics: Applications to biology, medicine, and economics. Physica A, 285, 117, https://doi.org/10.1016/S0378-4371(00)00341-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanley, H. E., 2005: Correlated randomness: Some examples of exotic statistical physics. Pramana, 64, 645–660, https://doi.org/10.1007/BF02704574.

    • Crossref
    • Export Citation
  • Stratimirović, D., S. Milošević, S. Blesić, and M. Ljubisavljević, 2001: Wavelet analysis of discharge dynamics of fusimotor neurons. Physica A, 291, 1323, https://doi.org/10.1016/S0378-4371(00)00495-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stratimirović, D., D. Sarvan, V. Miljković, and S. Blesić, 2018: Analysis of cyclical behavior in time series of stock market returns. Commun. Nonlinear Sci. Numer. Simul., 54, 2133, https://doi.org/10.1016/j.cnsns.2017.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talkner, P., and R. Weber, 2000: Power spectrum and detrended fluctuation analysis: Application to daily temperatures. Phys. Rev. E, 62, 150160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamazian, A., J. Ludescher, and A. Bunde, 2015: Significance of trends in long-term correlated records. Phys. Rev. E, 91, 032806, https://doi.org/10.1103/PhysRevE.91.032806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 2017: A practical guide to wavelet analysis with significance and confidence testing. University of Colorado Boulder, https://github.com/chris-torrence/wavelets.

  • Tsonis, A. A., and P. J. Roebber, 2004: The architecture of the climate network. Physica A, 333, 497504, https://doi.org/10.1016/j.physa.2003.10.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsonis, A. A., P. J. Roebber, and J. B. Elsner, 1999: Long-range correlations in the extratropical atmospheric circulation: Origins and implications. J. Climate, 12, 15341541, https://doi.org/10.1175/1520-0442(1999)012<1534:LRCITE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsonis, A. A., A. G. Hunt, and J. B. Elsner, 2003: On the relation between ENSO and global climate change. Meteor. Atmos. Phys., 84, 229242, https://doi.org/10.1007/s00703-003-0001-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varotsos, C. A., C. L. Franzke, M. N. Efstathiou, and A. G. Degermendzhi, 2014: Evidence for two abrupt warming events of SST in the last century. Theor. Appl. Climatol., 116, 5160, https://doi.org/10.1007/s00704-013-0935-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., A. Bunde, and N. Stehr, 2012: The physical sciences and climate politics. The Oxford Handbook of Climate Change and Society, J. S. Dryzek, R. B. Norgaard, and D. Schlosberg, Eds., Oxford University Press, 3–8.

  • Watkins, N. W., 2017: Fractional stochastic models for heavy tailed, and long-range dependent, fluctuations in physical systems. Nonlinear and Stochastic Climate Dynamics, C. L. E. Franzke and T. J. O’Kane, Eds., Cambridge University Press, 340–368, https://doi.org/10.1017/9781316339251.013.

    • Crossref
    • Export Citation
  • Xu, L., P. C. Ivanov, K. Hu, Z. Chen, A. Carbone, and H. E. Stanley, 2005: Quantifying signals with power-law correlations: A comparative study of detrended fluctuation analysis and detrended moving average techniques. Phys. Rev. E, 71, 051101, https://doi.org/10.1103/PhysRevE.71.051101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanchettin, D., 2017: Aerosol and solar irradiance effects on decadal climate variability and predictability. Curr. Climate Change Rep., 3, 150162, https://doi.org/10.1007/s40641-017-0065-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanchettin, D., A. Rubino, P. Traverso, and M. Tomasino, 2008: Impact of variations in solar activity on hydrological decadal patterns in northern Italy. J. Geophys. Res., 113, D12102, https://doi.org/10.1029/2007JD009157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanchettin, D., A. Rubino, D. Matei, O. Bothe, and J. H. Jungclaus, 2013: Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium. Climate Dyn., 40, 13011318, https://doi.org/10.1007/s00382-012-1361-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zorita, E., T. F. Stocker, and H. Von Storch, 2008: How unusual is the recent series of warm years? Geophys. Res. Lett., 35, L24706, https://doi.org/10.1029/2008GL036228.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1317 549 58
PDF Downloads 751 82 11