A Robust Constraint on the Temperature and Height of the Extratropical Tropopause

David W. J. Thompson Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by David W. J. Thompson in
Current site
Google Scholar
PubMed
Close
,
Paulo Ceppi Grantham Institute for Climate Change and the Environment, Imperial College London, London, United Kingdom

Search for other papers by Paulo Ceppi in
Current site
Google Scholar
PubMed
Close
, and
Ying Li Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Ying Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In a recent study, the authors hypothesize that the Clausius–Clapeyron relation provides a strong constraint on the temperature of the extratropical tropopause and hence the depth of mixing by extratropical eddies. The hypothesis is a generalization of the fixed-anvil temperature hypothesis to the global atmospheric circulation. It posits that the depth of robust mixing by extratropical eddies is limited by radiative cooling by water vapor—and hence saturation vapor pressures—in areas of sinking motion. The hypothesis implies that 1) radiative cooling by water vapor constrains the vertical structure and amplitude of extratropical dynamics and 2) the extratropical tropopause should remain at roughly the same temperature and lift under global warming. Here the authors test the hypothesis in numerical simulations run on an aquaplanet general circulation model (GCM) and a coupled atmosphere–ocean GCM (AOGCM). The extratropical cloud-top height, wave driving, and lapse-rate tropopause all shift upward but remain at roughly the same temperature when the aquaplanet GCM is forced by uniform surface warming of +4 K and when the AOGCM is forced by RCP8.5 scenario emissions. “Locking” simulations run on the aquaplanet GCM further reveal that 1) holding the water vapor concentrations input into the radiation code fixed while increasing surface temperatures strongly constrains the rise in the extratropical tropopause, whereas 2) increasing the water vapor concentrations input into the radiation code while holding surface temperatures fixed leads to robust rises in the extratropical tropopause. Together, the results suggest that roughly invariant extratropical tropopause temperatures constitutes an additional “robust response” of the climate system to global warming.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David W. J. Thompson, davet@atmos.colostate.edu

Abstract

In a recent study, the authors hypothesize that the Clausius–Clapeyron relation provides a strong constraint on the temperature of the extratropical tropopause and hence the depth of mixing by extratropical eddies. The hypothesis is a generalization of the fixed-anvil temperature hypothesis to the global atmospheric circulation. It posits that the depth of robust mixing by extratropical eddies is limited by radiative cooling by water vapor—and hence saturation vapor pressures—in areas of sinking motion. The hypothesis implies that 1) radiative cooling by water vapor constrains the vertical structure and amplitude of extratropical dynamics and 2) the extratropical tropopause should remain at roughly the same temperature and lift under global warming. Here the authors test the hypothesis in numerical simulations run on an aquaplanet general circulation model (GCM) and a coupled atmosphere–ocean GCM (AOGCM). The extratropical cloud-top height, wave driving, and lapse-rate tropopause all shift upward but remain at roughly the same temperature when the aquaplanet GCM is forced by uniform surface warming of +4 K and when the AOGCM is forced by RCP8.5 scenario emissions. “Locking” simulations run on the aquaplanet GCM further reveal that 1) holding the water vapor concentrations input into the radiation code fixed while increasing surface temperatures strongly constrains the rise in the extratropical tropopause, whereas 2) increasing the water vapor concentrations input into the radiation code while holding surface temperatures fixed leads to robust rises in the extratropical tropopause. Together, the results suggest that roughly invariant extratropical tropopause temperatures constitutes an additional “robust response” of the climate system to global warming.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David W. J. Thompson, davet@atmos.colostate.edu
Save
  • Betts, A. K., 1998: Climate–convection feedbacks: Some further issues. Climatic Change, 39, 3538, https://doi.org/10.1023/A:1005323805826.

  • Birner, T., 2010: Residual circulation and tropopause structure. J. Atmos. Sci., 67, 25822600, https://doi.org/10.1175/2010JAS3287.1.

  • Collins, W. D., and Coauthors, 2006: The formulation and atmospheric simulation of the Community Atmosphere Model Version 3 (CAM3). J. Climate, 19, 21442161, https://doi.org/10.1175/JCLI3760.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth system model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, https://doi.org/10.1007/s00382-012-1636-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., Jr., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen- Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, https://doi.org/10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2; Corrigendum, 38, 1115, https://doi.org/10.1175/1520-0469(1981)038<1115:>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haqq-Misra, J., S. Lee, and D. M. W. Frierson, 2011: Tropopause structure and the role of eddies. J. Atmos. Sci., 68, 29302944, https://doi.org/10.1175/JAS-D-11-087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrop, B. E., and D. L. Hartmann, 2012: Testing the role of radiation in determining tropical cloud top temperature. J. Climate, 25, 57315747, https://doi.org/10.1175/JCLI-D-11-00445.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and K. Larson, 2002: An important constraint on tropical cloud-climate feedback. Geophys. Res. Lett., 29, 1951, https://doi.org/10.1029/2002GL015835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., J. R. Holton, and Q. Fu, 2001: The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration. Geophys. Res. Lett., 28, 19691972, https://doi.org/10.1029/2000GL012833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1982: On the height of the tropopause and the static stability of the troposphere. J. Atmos. Sci., 39, 412417, https://doi.org/10.1175/1520-0469(1982)039<0412:OTHOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2006: The LMDZ4 general circulation model: Climate performance and sensitivity to parameterized physics with emphasis on tropical convection. Climate Dyn., 27, 787813, https://doi.org/10.1007/s00382-006-0158-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingram, W., 2010: A very simple model for the water vapour feedback on climate change. Quart. J. Roy. Meteor. Soc., 136, 3040, https://doi.org/10.1002/qj.546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, https://doi.org/10.1029/2006JD008087.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361385, https://doi.org/10.1175/1520-0469(1964)021<0361:TEOTAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1975: The effect of doubling CO2 concentration on the climate of the general circulation model. J. Atmos. Sci., 32, 315, https://doi.org/10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., and W. J. Ingram, 1992: Carbon dioxide and climate: Mechanisms of changes in cloud. J. Climate, 5, 521, https://doi.org/10.1175/1520-0442(1992)005<0005:CDACMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., C. A. Wilson, and W. M. Cunnington, 1987: On CO2 climate sensitivity and model dependence of result. Quart. J. Roy. Met. Soc., 113, 293322, https://doi.org/10.1002/qj.49711347517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and B. J. Hoskins, 2000: A standard test for AGCMs including their physical parametrizations: I: The proposal. Atmos. Sci. Lett., 1, 101107, https://doi.org/10.1006/asle.2000.0022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2003: Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science, 301, 479483, https://doi.org/10.1126/science.1084123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2004: The tropopause and the thermal stratification in the extratropics of a dry atmosphere. J. Atmos. Sci., 61, 13171340, https://doi.org/10.1175/1520-0469(2004)061<1317:TTATTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, G. C., 1928: Some studies in terrestrial radiation. Mem. Roy. Meteor. Soc., 2, 6995.

  • Singh, M. S., and P. A. O’Gorman, 2012: Upward shift of the atmospheric general circulation under global warming: Theory and simulations. J. Climate, 25, 82598276, https://doi.org/10.1175/JCLI-D-11-00699.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1978: Baroclinic adjustment. J. Atmos. Sci., 35, 561571, https://doi.org/10.1175/1520-0469(1978)035<0561:BA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., S. Bony, and Y. Li, 2017: Thermodynamic constraint on the depth of the global tropospheric circulation. Proc. Nat. Acad. Sci. USA, 114, 81818186, https://doi.org/10.1073/pnas.1620493114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thuburn, J., and G. C. Craig, 2000: Stratospheric influence on tropopause height: The radiative constraint. J. Atmos. Sci., 57, 1728, https://doi.org/10.1175/1520-0469(2000)057<0017:SIOTHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetherald, R. T., and S. Manabe, 1988: Cloud feedback processes in a general circulation model. J. Atmos. Sci., 45, 13971415, https://doi.org/10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2010: Why is longwave cloud feedback positive? J. Geophys. Res., 115, D16117, https://doi.org/10.1029/2010JD013817.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012: Computing and partitioning cloud feedbacks using cloud property histograms. Part II: Attribution to changes in cloud amount, altitude, and optical depth. J. Climate, 25, 37363754, https://doi.org/10.1175/JCLI-D-11-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster, 2013: Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Climate, 26, 50075027, https://doi.org/10.1175/JCLI-D-12-00555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., and R. S. Lindzen, 2007: Theories of baroclinic adjustment and eddy equilibration. The Global Circulation of the Atmosphere: Phenomena, Theory, Challenges, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 22–46.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1083 678 39
PDF Downloads 464 81 13