High-Resolution Seeded Simulations of Western North Pacific Ocean Tropical Cyclones in Two Future Extreme Climates

J. G. McLay Naval Research Laboratory, Monterey, California

Search for other papers by J. G. McLay in
Current site
Google Scholar
PubMed
Close
,
E. A. Hendricks Department of Meteorology, U.S. Naval Postgraduate School, Monterey, California

Search for other papers by E. A. Hendricks in
Current site
Google Scholar
PubMed
Close
, and
J. Moskaitis Naval Research Laboratory, Monterey, California

Search for other papers by J. Moskaitis in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT

A variant of downscaling is devised to explore the properties of tropical cyclones (TCs) that originate in the open ocean of the western North Pacific Ocean (WestPac) region under extreme climates. This variant applies a seeding strategy in large-scale environments simulated by phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate-model integrations together with embedded integrations of Coupled Ocean–Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS-TC), an operational, high-resolution, nonhydrostatic, convection-permitting numerical weather prediction (NWP) model. Test periods for the present day and late twenty-first century are sampled from two different integrations for the representative concentration pathway (RCP) 8.5 forcing scenario. Then seeded simulations for the present-day period are contrasted with similar seeded simulations for the future period. Reinforcing other downscaling studies, the seeding results suggest that the future environments are notably more conducive to high-intensity TC activity in the WestPac. Specifically, the future simulations yield considerably more TCs that exceed 96-kt (1 kt ≈ 0.5144 m s−1) intensity, and these TCs exhibit notably greater average life cycle maximum intensity and tend to spend more time above the 96-kt intensity threshold. Also, the future simulations yield more TCs that make landfall at >64-kt intensity, and the average landfall intensity of these storms is appreciably greater. These findings are supported by statistical bootstrap analysis as well as by a supplemental sensitivity analysis. Accounting for COAMPS-TC intensity forecast bias using a quantile-matching approach, the seeded simulations suggest that the potential maximum western North Pacific TC intensities in the future extreme climate may be approximately 190 kt.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. G. McLay, justin.mclay@nrlmry.navy.mil

ABSTRACT

A variant of downscaling is devised to explore the properties of tropical cyclones (TCs) that originate in the open ocean of the western North Pacific Ocean (WestPac) region under extreme climates. This variant applies a seeding strategy in large-scale environments simulated by phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate-model integrations together with embedded integrations of Coupled Ocean–Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS-TC), an operational, high-resolution, nonhydrostatic, convection-permitting numerical weather prediction (NWP) model. Test periods for the present day and late twenty-first century are sampled from two different integrations for the representative concentration pathway (RCP) 8.5 forcing scenario. Then seeded simulations for the present-day period are contrasted with similar seeded simulations for the future period. Reinforcing other downscaling studies, the seeding results suggest that the future environments are notably more conducive to high-intensity TC activity in the WestPac. Specifically, the future simulations yield considerably more TCs that exceed 96-kt (1 kt ≈ 0.5144 m s−1) intensity, and these TCs exhibit notably greater average life cycle maximum intensity and tend to spend more time above the 96-kt intensity threshold. Also, the future simulations yield more TCs that make landfall at >64-kt intensity, and the average landfall intensity of these storms is appreciably greater. These findings are supported by statistical bootstrap analysis as well as by a supplemental sensitivity analysis. Accounting for COAMPS-TC intensity forecast bias using a quantile-matching approach, the seeded simulations suggest that the potential maximum western North Pacific TC intensities in the future extreme climate may be approximately 190 kt.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. G. McLay, justin.mclay@nrlmry.navy.mil
Save
  • Alessandrini, S., L. D. Monache, C. M. Rozoff, and W. E. Lewis, 2018: Probabilistic prediction of tropical cyclone intensity with an analog ensemble. Mon. Wea. Rev., 146, 17231744, https://doi.org/10.1175/MWR-D-17-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. M. Held, 2010: Model impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454458, https://doi.org/10.1126/science.1180568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J.-J. Luo, and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A, 538560, https://doi.org/10.1111/j.1600-0870.2007.00251.x.

    • Search Google Scholar
    • Export Citation
  • Bentley, J., 1999: Programming Pearls. 2nd ed. Addison-Wesley, 256 pp.

  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, https://doi.org/10.1029/2001JD000776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 98809902, https://doi.org/10.1175/JCLI-D-12-00549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, https://doi.org/10.1175/JCLI4282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., M. A. Alexander, N. A. Bond, E. N. Curchitser, and J. D. Scott, 2012: Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res., 117, C04031, https://doi.org/10.1029/2011JC007409.

    • Search Google Scholar
    • Export Citation
  • Chen, C., and G. Wang, 2015: Role of North Pacific mixed layer in the response of SST annual cycle to global warming. J. Climate, 28, 94519458, https://doi.org/10.1175/JCLI-D-14-00349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, K.-S., and Y.-M. Cha, 2012: Change in future tropical cyclone activity over the western North Pacific under global warming scenario. Nat. Hazards, 64, 11251140, https://doi.org/10.1007/s11069-012-0285-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, and H. C. Graber, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2014: Tropical cyclone prediction using COAMPS-TC. Oceanography, 27 (3), 104115, https://doi.org/10.5670/oceanog.2014.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, https://doi.org/10.1007/s00382-012-1636-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1995: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52, 39603968, https://doi.org/10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2006: Climate and tropical cyclone activity: A new model downscaling approach. J. Climate, 19, 47974802, https://doi.org/10.1175/JCLI3908.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 21912 224, https://doi.org/10.1073/pnas.1301293110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2015: Effect of upper-ocean evolution on projected trends in tropical cyclone activity. J. Climate, 28, 81658170, https://doi.org/10.1175/JCLI-D-15-0401.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2, https://ams.confex.com/ams/pdfpapers/75463.pdf.

  • Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367, https://doi.org/10.1175/BAMS-89-3-347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwhara, S., 1921: The natural tendency towards symmetry of motion and its application as a principle in meteorology. Quart. J. Roy. Meteor. Soc., 47, 287293, https://doi.org/10.1002/qj.49704720010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gall, R., J. Franklin, F. Marks, E. N. Rappaport, and F. Toepfer, 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329343, https://doi.org/10.1175/BAMS-D-12-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model Version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. S. Peng, and T. Li, 2013: Evaluation of multiple dynamic initialization schemes for tropical cyclone prediction. Mon. Wea. Rev., 141, 40284048, https://doi.org/10.1175/MWR-D-12-00329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2011: The impact of future climate change on TC intensity and structure: A downscaling approach. J. Climate, 24, 46444661, https://doi.org/10.1175/2011JCLI3761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, T. F., and Coauthors, 2014: Oceanography, 27 (3), 116125, https://doi.org/10.5670/oceanog.2014.73.

  • Huang, C. J., F. Qiao, and D. Dai, 2014: Evaluating CMIP5 simulations of mixed layer depth during summer. J. Geophys. Res. Oceans, 119, 25682582, https://doi.org/10.1002/2013JC009535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., I.-I. Lin, C. Chou, and R.-H. Huang, 2015: Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nat. Commun., 6, 7188, https://doi.org/10.1038/ncomms8188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Y., W. T. Thompson, S. Wang, and C.-S. Liou, 2007: A numerical study of the effect of dissipative heating on tropical cyclone intensity. Wea. Forecasting, 22, 950966, https://doi.org/10.1175/WAF1028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and K. Emanuel, 2013: Rotating radiative-convective equilibrium simulated by a cloud-resolving model. J. Adv. Model. Earth Syst., 5, 816825, https://doi.org/10.1002/2013MS000253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS) unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, G. A. Vecchi, and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 359364, https://doi.org/10.1038/ngeo202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2013: Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Climate, 26, 65916617, https://doi.org/10.1175/JCLI-D-12-00539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, M. Zhao, R. E. Tuleya, M. Bender, G. A. Vecchi, G. Villarini, and D. Chavas, 2015: Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Climate, 28, 72037224, https://doi.org/10.1175/JCLI-D-15-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korty, R. L., K. A. Emanuel, M. Huber, and R. A. Zamora, 2017: Tropical cyclones downscaled from simulations with very high carbon dioxide levels. J. Climate, 30, 649667, https://doi.org/10.1175/JCLI-D-16-0256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2018: A global slowdown of tropical-cyclone translation speed. Nature, 558, 104107, https://doi.org/10.1038/s41586-018-0158-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. A. Emanuel, and S. J. Camargo, 2016: Past and projected changes in western North Pacific tropical cyclone exposure. J. Climate, 29, 57255739, https://doi.org/10.1175/JCLI-D-16-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, C.-S., and K. D. Sashegyi, 2012: On the initialization of tropical cyclones with a three-dimensional variational analysis. Nat. Hazards, 63, 13751391, https://doi.org/10.1007/s11069-011-9838-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLay, J. G., C. A. Reynolds, E. Satterfield, and D. Hodyss, 2016: Changes to intrinsic weather forecast uncertainty in one scenario of extreme future climate. Quart. J. Roy. Meteor. Soc., 142, 21022118, https://doi.org/10.1002/qj.2806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., S.-P. Xie, F. Primeau, J. C. McWilliams, and C. Pasquero, 2015: Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Sci. Adv., 1, e1500014, https://doi.org/10.1126/sciadv.1500014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., B. Wang, and A. Kitoh, 2011: Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Climate, 24, 11541168, https://doi.org/10.1175/2010JCLI3723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2012: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 32373260, https://doi.org/10.1175/JCLI-D-11-00415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, R., T. Shibayama, M. Esteban, and T. Iwamoto, 2016: Future typhoon and storm surges under different global warming scenarios: case study of Typhoon Haiyan (2013). Nat. Hazards, 82, 16451681, https://doi.org/10.1007/s11069-016-2259-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259276, https://doi.org/10.2151/jmsj.84.259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and Coauthors, 2015: Tropical cyclones in the UPSCALE ensemble of high-resolution global climate models. J. Climate, 28, 574596, https://doi.org/10.1175/JCLI-D-14-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallee, J.-B., E. Shuckburgh, N. Bruneau, A. J. S. Meijers, T. J. Bracegirdle, and Z. Wang, 2013: Assessment of Southern Ocean mixed layer depths in CMIP5 models: Historical bias and forcing response. J. Geophys. Res. Oceans, 118, 18451862, https://doi.org/10.1002/jgrc.20157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, R. H., and H. Riehl, 1981: The Hurricane and Its Impact. LSU Press, 398 pp.

  • Sun, Y., and Coauthors, 2017: Impact of ocean warming on tropical cyclone size and its destructiveness. Sci. Rep., 7, 8154, https://doi.org/10.1038/s41598-017-08533-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swiss Re, 2017: Natural catastrophes and man-made disasters in 2016: A year of widespread disasters. Swiss Re Sigma 2, 43 pp. [Available online at https://www.preventionweb.net/publications/view/52534.]

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuboki, K., M. K. Yoshioka, T. Shinoda, M. Kato, S. Kanada, and A. Kitoh, 2015: Future increase of supertyphoon intensity associated with climate change. Geophys. Res. Lett., 42, 646652, https://doi.org/10.1002/2014GL061793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., M. Bender, T. R. Knutson, J. J. Sirutis, B. Thomas, and I. Ginis, 2016: Impact of upper tropospheric temperature anomalies and vertical wind shear on tropical cyclone evolution using an idealized version of the operational GFDL hurricane model. J. Atmos. Sci., 73, 3803–3820, https://doi.org/10.1175/JAS-D-16-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vial, J., J.-L. Dufresne, and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 33393362, https://doi.org/10.1007/s00382-013-1725-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and G. A. Vecchi, 2013: Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. J. Climate, 26, 32313240, https://doi.org/10.1175/JCLI-D-12-00441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K. E., and Coauthors, 2015: Tropical cyclones and climate change. Wiley Interdiscip. Rev.: Climate Change, 7, 6589, https://doi.org/10.1002/wcc.371.

    • Search Google Scholar
    • Export Citation
  • Wang, C., and L. Wu, 2015: Influence of future tropical cyclone track changes on their basin-wide intensity over the western North Pacific: Downscaled CMIP5 projections. Adv. Atmos. Sci., 32, 613623, https://doi.org/10.1007/s00376-014-4105-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H.-J., R.-H. Zhang, J. Cole, and F. Chavez, 1999: El Niño and the related phenomenon Southern Oscillation (ENSO): The largest signal in interannual climate variation. Proc. Natl. Acad. Sci. USA, 96, 11 07111 072, https://doi.org/10.1073/pnas.96.20.11071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, D. N., B. N. Lawrence, M. Lautenschlager, D. Middleton, and V. Balaji, 2011: The Earth System Grid Federation: Delivering globally accessible petascale data for CMIP5. Proc. Asia-Pac. Adv. Network, 32, 121130, https://doi.org/10.7125/APAN.32.15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoi, S., Y. N. Takayabu, and H. Murakami, 2013: Attribution of projected future changes in tropical cyclone passage frequency over the western North Pacific. J. Climate, 26, 40964111, https://doi.org/10.1175/JCLI-D-12-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshimura, J., and M. Sugi, 2005: Tropical cyclone climatology in a high-resolution AGCM—Impacts of SST warming and CO2 increase. SOLA, 1, 133136, https://doi.org/10.2151/sola.2005-035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and I. M. Held, 2010: An analysis of the effect of global warming on the intensity of Atlantic hurricanes using a GCM with statistical refinement. J. Climate, 23, 63826393, https://doi.org/10.1175/2010JCLI3837.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1073 794 45
PDF Downloads 301 39 2