Storm Track Response to Oceanic Eddies in Idealized Atmospheric Simulations

A. Foussard LMD/IPSL, CNRS, Ecole Polytechnique, Ecole Normale Supérieure, Sorbonne Université, Paris, and Ecole des Ponts ParisTech, Champs-sur-Marne, France

Search for other papers by A. Foussard in
Current site
Google Scholar
PubMed
Close
,
G. Lapeyre LMD/IPSL, CNRS, Ecole Polytechnique, Ecole Normale Supérieure, Sorbonne Université, Paris, France

Search for other papers by G. Lapeyre in
Current site
Google Scholar
PubMed
Close
, and
R. Plougonven LMD/IPSL, CNRS, Ecole Polytechnique, Ecole Normale Supérieure, Sorbonne Université, Paris, France

Search for other papers by R. Plougonven in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT

Large-scale oceanic fronts, such as in western boundary currents, have been shown to play an important role in the dynamics of atmospheric storm tracks. Little is known about the influence of mesoscale oceanic eddies on the free troposphere, although their imprint on the atmospheric boundary layer is well documented. The present study investigates the response of the tropospheric storm track to the presence of sea surface temperature (SST) anomalies associated with an eddying ocean. Idealized experiments are carried out in a configuration of a zonally reentrant channel representing the midlatitudes. The SST field is composed of a large-scale zonally symmetric front to which are added mesoscale eddies localized close to the front. Numerical simulations show a robust signal of a poleward shift of the storm track and of the tropospheric eddy-driven jet when oceanic eddies are taken into account. This is accompanied by more intense air–sea fluxes and convective heating above oceanic eddies. Also, a mean heating of the troposphere occurs poleward of the oceanic eddying region, within the storm track. A heat budget analysis shows that it is caused by a stronger diabatic heating within storms associated with more water advected poleward. This additional heating affects the baroclinicity of the flow, which pushes the jet and the storm track poleward.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Climate Implications of Frontal Scale Air–Sea Interaction Special Collection.

Corresponding author address: G. Lapeyre, glapeyre@lmd.ens.fr

ABSTRACT

Large-scale oceanic fronts, such as in western boundary currents, have been shown to play an important role in the dynamics of atmospheric storm tracks. Little is known about the influence of mesoscale oceanic eddies on the free troposphere, although their imprint on the atmospheric boundary layer is well documented. The present study investigates the response of the tropospheric storm track to the presence of sea surface temperature (SST) anomalies associated with an eddying ocean. Idealized experiments are carried out in a configuration of a zonally reentrant channel representing the midlatitudes. The SST field is composed of a large-scale zonally symmetric front to which are added mesoscale eddies localized close to the front. Numerical simulations show a robust signal of a poleward shift of the storm track and of the tropospheric eddy-driven jet when oceanic eddies are taken into account. This is accompanied by more intense air–sea fluxes and convective heating above oceanic eddies. Also, a mean heating of the troposphere occurs poleward of the oceanic eddying region, within the storm track. A heat budget analysis shows that it is caused by a stronger diabatic heating within storms associated with more water advected poleward. This additional heating affects the baroclinicity of the flow, which pushes the jet and the storm track poleward.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Climate Implications of Frontal Scale Air–Sea Interaction Special Collection.

Corresponding author address: G. Lapeyre, glapeyre@lmd.ens.fr
Save
  • Baker, H. S., T. Woollings, and C. Mbengue, 2017: Eddy-driven jet sensitivity to diabatic heating in an idealized GCM. J. Climate, 30, 64136431, https://doi.org/10.1175/JCLI-D-16-0864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourras, D., G. Reverdin, H. Giordani, and G. Caniaux, 2004: Response of the atmospheric boundary layer to a mesoscale oceanic eddy in the northeast Atlantic. J. Geophys. Res., 109, D18114, https://doi.org/10.1029/2004JD004799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brachet, S., F. Codron, Y. Feliks, M. Ghil, H. Le Treut, and E. Simonnet, 2012: Atmospheric circulations induced by a midlatitude SST front: A GCM study. J. Climate, 25, 18471853, https://doi.org/10.1175/JCLI-D-11-00329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 28422860, https://doi.org/10.1175/2008JAS2657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, D., L. Papritz, I. Frenger, M. Münnich, and N. Gruber, 2015: Atmospheric response to mesoscale sea surface temperature anomalies: Assessment of mechanisms and coupling strength in a high-resolution coupled model over the South Atlantic. J. Atmos. Sci., 72, 18721890, https://doi.org/10.1175/JAS-D-14-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 14981509, https://doi.org/10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., and L. Terray, 2001: Dual influence of Atlantic and Pacific SST anomalies on the North Atlantic/Europe winter climate. Geophys. Res. Lett., 28, 31953198, https://doi.org/10.1029/2000GL012510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., L. C. Shaffrey, and K. I. Hodges, 2010: Can climate models capture the structure of extratropical cyclones? J. Climate, 23, 16211635, https://doi.org/10.1175/2009JCLI3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, https://doi.org/10.1126/science.1091901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deremble, B., G. Lapeyre, and M. Ghil, 2012: Atmospheric dynamics triggered by an oceanic SST front in a moist quasigeostrophic model. J. Atmos. Sci., 69, 16171632, https://doi.org/10.1175/JAS-D-11-0288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20, 233254, https://doi.org/10.1175/JCLI3998.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., N. Sennéchael, Y.-O. Kwon, and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762777, https://doi.org/10.1175/2010JCLI3731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frenger, I., N. Gruber, R. Knutti, and M. Münnich, 2013: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci., 6, 608612, https://doi.org/10.1038/ngeo1863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, https://doi.org/10.1175/JAS3753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graff, L. S., and J. H. LaCasce, 2012: Changes in the extratropical storm tracks in response to changes in SST in an AGCM. J. Climate, 25, 18541870, https://doi.org/10.1175/JCLI-D-11-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., S. W. Lyons, and S. Nigam, 1989: Transients and the extratropical response to El Niño. J. Atmos. Sci., 46, 163174, https://doi.org/10.1175/1520-0469(1989)046<0163:TATERT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, https://doi.org/10.1038/ngeo2424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. Robinson, I. Bladé, N. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256, https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuwano-Yoshida, A., and S. Minobe, 2017: Storm-track response to SST fronts in the Northwestern Pacific region in an AGCM. J. Climate, 30, 10811102, https://doi.org/10.1175/JCLI-D-16-0331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambaerts, J., G. Lapeyre, R. Plougonven, and P. Klein, 2013: Atmospheric response to sea surface temperature mesoscale structures. J. Geophys. Res. Atmos., 118, 96119621, https://doi.org/10.1002/jgrd.50769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and P. Klein, 2006: Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr., 36, 165176, https://doi.org/10.1175/JPO2840.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1997: Interactions between global SST anomalies and midlatitude atmospheric circulation. Bull. Amer. Meteor. Soc., 78, 2133, https://doi.org/10.1175/1520-0477(1997)078<0021:IBGSAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., and H.-K. Kim, 2003: The dynamical relationship between subtropical and eddy-driven jets. J. Atmos. Sci., 60, 14901503, https://doi.org/10.1175/1520-0469(2003)060<1490:TDRBSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., P. Chang, J. Kurian, R. Saravanan, and X. Lin, 2018: Satellite-observed precipitation response to ocean mesoscale eddies. J. Climate, 31, 68796895, https://doi.org/10.1175/JCLI-D-17-0668.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., H. Xu, C. Dong, P. Lin, and Y. Liu, 2015: Atmospheric responses to oceanic eddies in the Kuroshio Extension region. J. Geophys. Res. Atmos., 120, 63136330, https://doi.org/10.1002/2014JD022930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., and Coauthors, 2015: Distant influence of Kuroshio eddies on North Pacific weather patterns? Sci. Rep., 5, 17785, https://doi.org/10.1038/srep17785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., and Coauthors, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533537, https://doi.org/10.1038/nature18640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., P. Chang, R. Saravanan, R. Montuoro, H. Nakamura, D. Wu, X. Lin, and L. Wu, 2017: Importance of resolving Kuroshio front and eddy influence in simulating the North Pacific storm track. J. Climate, 30, 18611880, https://doi.org/10.1175/JCLI-D-16-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michel, C., and G. Rivière, 2014: Sensitivity of the position and variability of the eddy-driven jet to different SST profiles in an aquaplanet general circulation model. J. Atmos. Sci., 71, 349371, https://doi.org/10.1175/JAS-D-13-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, https://doi.org/10.1038/nature06690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams, and midlatitude oceanic fronts. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329–345.

    • Crossref
    • Export Citation
  • Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, https://doi.org/10.1029/2008GL034010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., 2012: Wind speed and stability effects on coupling between surface wind stress and SST observed from buoys and satellite. J. Climate, 25, 15441569, https://doi.org/10.1175/JCLI-D-11-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., and A. Czaja, 2015: The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Quart. J. Roy. Meteor. Soc., 141, 5266, https://doi.org/10.1002/qj.2334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., S. Minobe, A. Kuwano-Yoshida, and T. Woollings, 2017: The Gulf Stream influence on wintertime North Atlantic jet variability. Quart. J. Roy. Meteor. Soc., 143, 173183, https://doi.org/10.1002/qj.2907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., and W. A. Robinson, 2001: Relationships between atmospheric internal variability and the responses to an extratropical SST anomaly. J. Climate, 14, 29432959, https://doi.org/10.1175/1520-0442(2001)014<2943:RBAIVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piazza, M., L. Terray, J. Boé, E. Maisonnave, and E. Sanchez-Gomez, 2016: Influence of small-scale North Atlantic sea surface temperature patterns on the marine boundary layer and free troposphere: A study using the atmospheric ARPEGE model. Climate Dyn., 46, 16991717, https://doi.org/10.1007/s00382-015-2669-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., A. Foussard, and G. Lapeyre, 2018: Comments on “The Gulf Stream convergence zone in the time-mean winds.” J. Atmos. Sci., 75, 21392149, https://doi.org/10.1175/JAS-D-17-0369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. C. McWilliams, A. F. Shchepetkin, F. Lemarié, D. Chelton, S. Illig, and A. Hall, 2016: Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 16851704, https://doi.org/10.1175/JPO-D-15-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Révelard, A., C. Frankignoul, N. Sennéchael, Y.-O. Kwon, and B. Qiu, 2016: Influence of the decadal variability of the Kuroshio Extension on the atmospheric circulation in the cold season. J. Climate, 29, 21232144, https://doi.org/10.1175/JCLI-D-15-0511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2000: Review of WETS—The Workshop on Extra-Tropical SST Anomalies. Bull. Amer. Meteor. Soc., 81, 567577, https://doi.org/10.1175/1520-0477(2000)081<0567:ROWTWO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampe, T., H. Nakamura, A. Goto, and W. Ohfuchi, 2010: Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J. Climate, 23, 17931814, https://doi.org/10.1175/2009JCLI3163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., H. Wernli, N. A. Bond, and R. Langland, 2001: The influence of the 1997–1999 ENSO on extratropical baroclinic life cycles over the eastern North Pacific. Quart. J. Roy. Meteor. Soc., 127, 331342, https://doi.org/10.1002/qj.49712757205.

    • Search Google Scholar
    • Export Citation
  • Shaw, T., and Coauthors, 2016: Storm track processes and the opposing influences of climate change. Nat. Geosci., 9, 656664, https://doi.org/10.1038/ngeo2783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.

  • Small, R. J., R. A. Tomas, and F. O. Bryan, 2014: Storm track response to ocean fronts in a global high-resolution climate model. Climate Dyn., 43, 805828, https://doi.org/10.1007/s00382-013-1980-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnov, D., M. Newman, M. A. Alexander, Y.-O. Kwon, and C. Frankignoul, 2015: Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J. Climate, 28, 11261147, https://doi.org/10.1175/JCLI-D-14-00285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Z., J. Wang, P. Klein, A. F. Thompson, and D. Menemenlis, 2018: Ocean submesoscales as a key component of the global heat budget. Nat. Commun., 9, 775, https://doi.org/10.1038/s41467-018-02983-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., Y. Tanimoto, S.-P. Xie, T. Sampe, H. Tomita, and H. Ichikawa, 2009: Ocean frontal effects on the vertical development of clouds over the western North Pacific: In situ and satellite observations. J. Climate, 22, 42414260, https://doi.org/10.1175/2009JCLI2763.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vannière, B., A. Czaja, H. Dacre, and T. Woollings, 2017: A “cold path” for the Gulf Stream–troposphere connection. J. Climate, 30, 13631379, https://doi.org/10.1175/JCLI-D-15-0749.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villas Bôas, A. B., O. T. Sato, A. Chaigneau, and G. P. Castelão, 2015: The signature of mesoscale eddies on the air–sea turbulent heat fluxes in the South Atlantic Ocean. Geophys. Res. Lett., 42, 18561862, https://doi.org/10.1002/2015GL063105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., B. Hoskins, M. Blackburn, D. Hassell, and K. Hodges, 2010: Storm track sensitivity to sea surface temperature resolution in a regional atmosphere model. Climate Dyn., 35, 341353, https://doi.org/10.1007/s00382-009-0554-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3648 2390 62
PDF Downloads 1393 298 13