Intermodel Uncertainty in the Change of ENSO’s Amplitude under Global Warming: Role of the Response of Atmospheric Circulation to SST Anomalies

Jun Ying State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China

Search for other papers by Jun Ying in
Current site
Google Scholar
PubMed
Close
,
Ping Huang Center for Monsoon System Research and State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and Joint Center for Global Change Studies, Beijing, China

Search for other papers by Ping Huang in
Current site
Google Scholar
PubMed
Close
,
Tao Lian State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China

Search for other papers by Tao Lian in
Current site
Google Scholar
PubMed
Close
, and
Dake Chen State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China

Search for other papers by Dake Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the mechanism of the large intermodel uncertainty in the change of ENSO’s amplitude under global warming based on 31 CMIP5 models. We find that the uncertainty in ENSO’s amplitude is significantly correlated to that of the change in the response of atmospheric circulation to SST anomalies (SSTAs) in the eastern equatorial Pacific Niño-3 region. This effect of the atmospheric response to SSTAs mainly influences the uncertainty in ENSO’s amplitude during El Niño (EN) phases, but not during La Niña (LN) phases, showing pronounced nonlinearity. The effect of the relative SST warming and the present-day response of atmospheric circulation to SSTAs are the two major contributors to the intermodel spread of the change in the atmospheric response to SSTAs, of which the latter is more important. On the one hand, models with a stronger (weaker) mean-state SST warming in the eastern equatorial Pacific, relative to the tropical-mean warming, favor a larger (smaller) increase in the change in the response of atmospheric circulation to SSTAs in the eastern equatorial Pacific during EN. On the other hand, models with a weaker (stronger) present-day response of atmospheric circulation to SSTAs during EN tend to exhibit a larger (smaller) increase in the change under global warming. The result implies that an improved simulation of the present-day response of atmospheric circulation to SSTAs could be effective in lowering the uncertainty in ENSO’s amplitude change under global warming.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Ping Huang, huangping@mail.iap.ac.cn

Abstract

This study investigates the mechanism of the large intermodel uncertainty in the change of ENSO’s amplitude under global warming based on 31 CMIP5 models. We find that the uncertainty in ENSO’s amplitude is significantly correlated to that of the change in the response of atmospheric circulation to SST anomalies (SSTAs) in the eastern equatorial Pacific Niño-3 region. This effect of the atmospheric response to SSTAs mainly influences the uncertainty in ENSO’s amplitude during El Niño (EN) phases, but not during La Niña (LN) phases, showing pronounced nonlinearity. The effect of the relative SST warming and the present-day response of atmospheric circulation to SSTAs are the two major contributors to the intermodel spread of the change in the atmospheric response to SSTAs, of which the latter is more important. On the one hand, models with a stronger (weaker) mean-state SST warming in the eastern equatorial Pacific, relative to the tropical-mean warming, favor a larger (smaller) increase in the change in the response of atmospheric circulation to SSTAs in the eastern equatorial Pacific during EN. On the other hand, models with a weaker (stronger) present-day response of atmospheric circulation to SSTAs during EN tend to exhibit a larger (smaller) increase in the change under global warming. The result implies that an improved simulation of the present-day response of atmospheric circulation to SSTAs could be effective in lowering the uncertainty in ENSO’s amplitude change under global warming.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Ping Huang, huangping@mail.iap.ac.cn
Save
  • An, S.-I., and J. Choi, 2015: Why the twenty-first century tropical Pacific trend pattern cannot significantly influence ENSO amplitude? Climate Dyn., 44, 133146, https://doi.org/10.1007/s00382-014-2233-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., E. S. Heo, and S. T. Kim, 2017: Feedback process responsible for intermodel diversity of ENSO variability. Geophys. Res. Lett., 44, 42724279, https://doi.org/10.1002/2017GL073203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., J. S. Whitaker, A. F. Loughe, P. D. Sardeshmukh, and Z. Toth, 1999: The effect of the 1997/98 El Niño on individual large-scale weather events. Bull. Amer. Meteor. Soc., 80, 13991411, https://doi.org/10.1175/1520-0477(1999)080<1399:TEOTEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and D. B. Stephenson, 2013: On the robustness of emergent constraints used in multimodel climate change projections of Arctic warming. J. Climate, 26, 669678, https://doi.org/10.1175/JCLI-D-12-00537.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, https://doi.org/10.1038/nclimate2100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015a: Increased frequency of extreme La Niña events under greenhouse warming. Nat. Climate Change, 5, 132137, https://doi.org/10.1038/nclimate2492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015b: ENSO and greenhouse warming. Nat. Climate Change, 5, 849859, https://doi.org/10.1038/nclimate2743.

  • Chang, P., R. Saravanan, L. Ji, and G. C. Hegerl, 2000: The effect of local sea surface temperatures on atmospheric circulation over the tropical Atlantic sector. J. Climate, 13, 21952216, https://doi.org/10.1175/1520-0442(2000)013<2195:TEOLSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., T. Li, and Y. Yu, 2015: Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models. J. Climate, 28, 32503274, https://doi.org/10.1175/JCLI-D-14-00439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., Y. Yu, and W. Zheng, 2016a: Improved ENSO simulation from climate system model FGOALS-g1.0 to FGOALS-g2. Climate Dyn., 47, 26172634, https://doi.org/10.1007/s00382-016-2988-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., T. Li, S. K. Behera, and T. Doi, 2016b: Distinctive precursory air–sea signals between regular and super El Niños. Adv. Atmos. Sci., 33, 9961004, https://doi.org/10.1007/s00376-016-5250-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., T. Li, B. Wang, and L. Wang, 2017a: Formation mechanism for 2015/16 super El Niño. Sci. Rep., 7, 2975, https://doi.org/10.1038/s41598-017-02926-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., T. Li, Y. Yu, and S. K. Behera, 2017b: A possible explanation for the divergent projection of ENSO amplitude change under global warming. Climate Dyn., 49, 37993811, https://doi.org/10.1007/s00382-017-3544-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. R. Friedman, 2012: Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci., 40, 383412, https://doi.org/10.1146/annurev-earth-042711-105545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, C. T. Y., S. B. Power, J. M. Arblaster, H. A. Rashid, and G. L. Roff, 2014: Nonlinear precipitation response to El Niño and global warming in the Indo-Pacific. Climate Dyn., 42, 18371856, https://doi.org/10.1007/s00382-013-1892-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, https://doi.org/10.1038/ngeo868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, https://doi.org/10.1146/annurev-marine-120408-151453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., B. P. Kirtman, A. C. Clement, S.-K. Lee, G. A. Vecchi, and A. Wittenberg, 2012: Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J. Climate, 25, 73997420, https://doi.org/10.1175/JCLI-D-11-00494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657659, https://doi.org/10.1126/science.238.4827.657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. van Oldenborgh, and T. Stockdale, 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325340, https://doi.org/10.1175/2008BAMS2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2012: How well do current climate models simulate two types of El Nino? Climate Dyn., 39, 383398, https://doi.org/10.1007/s00382-011-1157-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2016: ENSO amplitude changes due to greenhouse warming in CMIP5: Role of mean tropical precipitation in the twentieth century. Geophys. Res. Lett., 43, 422430, https://doi.org/10.1002/2015GL066864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, J.-Y. Choi, F.-F. Jin, and M. Watanabe, 2018: Inverse relationship between present-day tropical precipitation and its sensitivity to greenhouse warming. Nat. Climate Change, 8, 6469, https://doi.org/10.1038/s41558-017-0033-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1; Corrigendum, 24, 1559–1560, https://doi.org/10.1175/2010JCLI4045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., and S.-P. Xie, 2015: Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate. Nat. Geosci., 8, 922926, https://doi.org/10.1038/ngeo2571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., and J. Ying, 2015: A multimodel ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming. J. Climate, 28, 47064723, https://doi.org/10.1175/JCLI-D-14-00833.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., and D. Chen, 2017: Enlarged asymmetry of tropical pacific rainfall anomalies induced by El Niño and La Niña under global warming. J. Climate, 30, 13271343, https://doi.org/10.1175/JCLI-D-16-0427.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., D. Chen, and J. Ying, 2017: Weakening of the tropical atmospheric circulation response to local sea surface temperature anomalies under global warming. J. Climate, 30, 81498158, https://doi.org/10.1175/JCLI-D-17-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, W., G. Huang, P. Huang, and K. Hu, 2018: Weakening of northwest Pacific anticyclone anomalies during post–El Niño summers under global warming. J. Climate, 31, 35393555, https://doi.org/10.1175/JCLI-D-17-0613.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S. T. Kim, and L. Bejarano, 2006: A coupled-stability index for ENSO. Geophys. Res. Lett., 33, L23708, https://doi.org/10.1029/2006GL027221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845, https://doi.org/10.1038/ngeo1008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., and J.-S. Kug, 2002: El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. J. Geophys. Res., 107, 4372, https://doi.org/10.1029/2001JD000393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., J.-S. Kug, I.-S. Kang, F.-F. Jin, and A. T. Wittenberg, 2008: Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM. Climate Dyn., 31, 213226, https://doi.org/10.1007/s00382-007-0348-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S. T., and F.-F. Jin, 2011: An ENSO stability analysis. Part II: Results from the twentieth and twenty-first century simulations of the CMIP3 models. Climate Dyn., 36, 16091627, https://doi.org/10.1007/s00382-010-0872-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S. T., W. Cai, F.-F. Jin, A. Santoso, L. Wu, E. Guilyardi, and S.-I. An, 2014: Response of El Niño sea surface temperature variability to greenhouse warming. Nat. Climate Change, 4, 786790, https://doi.org/10.1038/nclimate2326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and S. Manabe, 1994: Impact of increased CO2 on simulated ENSO-like phenomena. Geophys. Res. Lett., 21, 22952298, https://doi.org/10.1029/94GL02152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., Y.-G. Ham, J.-Y. Lee, and F.-F. Jin, 2012: Improved simulation of two types of El Niño in CMIP5 models. Environ. Res. Lett., 7, 034002, https://doi.org/10.1088/1748-9326/7/3/034002; Corrigendum, 7, 039502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, Y. Du, and Y. Luo, 2016: Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: The warming pattern in CMIP5 multi-model ensemble. Climate Dyn., 47, 38173831, https://doi.org/10.1007/s00382-016-3043-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, J., E. Guilyardi, H. Weller, and J. Slingo, 2009: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos. Sci. Lett., 10, 170176, https://doi.org/10.1002/asl.227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, J., E. Guilyardi, and H. Weller, 2012: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: The shortwave flux feedback. J. Climate, 25, 42754293, https://doi.org/10.1175/JCLI-D-11-00178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851, https://doi.org/10.1175/2008JCLI2200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and H. Teng, 2007: Multi-model changes in El Niño teleconnections over North America in a future warmer climate. Climate Dyn., 29, 779790, https://doi.org/10.1007/s00382-007-0268-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, S. J., S. McGregor, A. Sen Gupta, and M. H. England, 2017: Future changes to El Niño–Southern Oscillation temperature and precipitation teleconnections. Geophys. Res. Lett., 44, 10 60810 616, https://doi.org/10.1002/2017GL074509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G., 1990: El Niño, La Niña and the Southern Oscillation. Academic Press, 293 pp.

  • Philip, S., and G. J. van Oldenborgh, 2006: Shifts in ENSO coupling processes under global warming. Geophys. Res. Lett., 33, L11704, https://doi.org/10.1029/2006GL026196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., F. Delage, C. Chung, G. Kociuba, and K. Keay, 2013: Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502, 541545, https://doi.org/10.1038/nature12580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rashid, H. A., A. C. Hirst, and S. J. Marsland, 2016: An atmospheric mechanism for ENSO amplitude changes under an abrupt quadrupling of CO2 concentration in CMIP5 models. Geophys. Res. Lett., 43, 16871694, https://doi.org/10.1002/2015GL066768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and M. J. Herman, 2011: Convective quasi-equilibrium reconsidered. J. Adv. Model. Earth Syst., 3, M08003, https://doi.org/10.1029/2011MS000079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 2002: Understanding differences between the equatorial Pacific as simulated by two coupled GCMs. J. Climate, 15, 449469, https://doi.org/10.1175/1520-0442(2002)015<0449:UDBTEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S. L., 2012: Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophys. Res. Lett., 39, L17703, https://doi.org/10.1029/2012GL052759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., T. Zhang, Y. Sun, and Y. Yu, 2014: Rectification of El Niño–Southern Oscillation into climate anomalies of decadal and longer time scales: Results from forced ocean GCM experiments. J. Climate, 27, 25452561, https://doi.org/10.1175/JCLI-D-13-00390.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., J. Oberhuber, A. Bacher, M. Esch, M. Latif, and E. Roeckner, 1999: Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398, 694697, https://doi.org/10.1038/19505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., S. Y. Philip, and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1, 8195, https://doi.org/10.5194/os-1-81-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., W. Cai, and A. Santoso, 2017: Assessing the impact of model biases on the projected increase in frequency of extreme positive Indian Ocean dipole events. J. Climate, 30, 27572767, https://doi.org/10.1175/JCLI-D-16-0509.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., J.-S. Kug, F.-F. Jin, M. Collins, M. Ohba, and A. T. Wittenberg, 2012: Uncertainty in the ENSO amplitude change from the past to the future. Geophys. Res. Lett., 39, L20703, https://doi.org/10.1029/2012GL053305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., B. P. Kirtman, and K. Pegion, 2006: Local air–sea relationship in observations and model simulations. J. Climate, 19, 49144932, https://doi.org/10.1175/JCLI3904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Coauthors, 2015: Towards predictive understanding of regional climate change. Nat. Climate Change, 5, 921930, https://doi.org/10.1038/nclimate2689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., and B. P. Kirtman, 2007: ENSO amplitude changes due to climate change projections in different coupled models. J. Climate, 20, 203217, https://doi.org/10.1175/JCLI4001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, https://doi.org/10.1038/nature08316; Corrigendum, 462, 674, https://doi.org/10.1038/nature08546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., and Coauthors, 2017: ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys., 56, 185206, https://doi.org/10.1002/2017RG000568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ying, J., P. Huang, T. Lian, and H. Tan, 2018: Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models. Climate Dyn., https://doi.org/10.1007/s00382-018-4219-y, in press.

    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., S.-P. Xie, L.-H. Lv, and Z.-Q. Zhou, 2016: Intermodel uncertainty in ENSO amplitude change tied to Pacific Ocean warming pattern. J. Climate, 29, 72657279, https://doi.org/10.1175/JCLI-D-16-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., C. Hui, and S.-W. Yeh, 2018: Response of ENSO amplitude to global warming in CESM large ensemble: Uncertainty due to internal variability. Climate Dyn., 50, 40194035, https://doi.org/10.1007/s00382-017-3859-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Z.-Q., and S.-P. Xie, 2015: Effects of climatological model biases on the projection of tropical climate change. J. Climate, 28, 99099917, https://doi.org/10.1175/JCLI-D-15-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Z.-Q., S.-P. Xie, X.-T. Zheng, Q. Liu, and H. Wang, 2014: Global warming–induced changes in El Niño teleconnections over the North Pacific and North America. J. Climate, 27, 90509064, https://doi.org/10.1175/JCLI-D-14-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1985 760 46
PDF Downloads 558 84 9