Tendency Bias Correction in Coupled and Uncoupled Global Climate Models with a Focus on Impacts over North America

Y. Chang Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, and Goddard Earth Sciences Technology and Research, Morgan State University, Baltimore, Maryland

Search for other papers by Y. Chang in
Current site
Google Scholar
PubMed
Close
,
S. D. Schubert Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, and Science Systems and Applications, Inc., Lanham, Maryland

Search for other papers by S. D. Schubert in
Current site
Google Scholar
PubMed
Close
,
R. D. Koster Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland

Search for other papers by R. D. Koster in
Current site
Google Scholar
PubMed
Close
,
A. M. Molod Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland

Search for other papers by A. M. Molod in
Current site
Google Scholar
PubMed
Close
, and
H. Wang Science Systems and Applications, Inc., Lanham, Maryland

Search for other papers by H. Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We revisit the bias correction problem in current climate models, taking advantage of state-of-the-art atmospheric reanalysis data and new data assimilation tools that simplify the estimation of short-term (6 hourly) atmospheric tendency errors. The focus is on the extent to which correcting biases in atmospheric tendencies improves the model’s climatology, variability, and ultimately forecast skill at subseasonal and seasonal time scales. Results are presented for the NASA GMAO GEOS model in both uncoupled (atmosphere only) and coupled (atmosphere–ocean) modes. For the uncoupled model, the focus is on correcting a stunted North Pacific jet and a dry bias over the central United States during boreal summer—long-standing errors that are indeed common to many current AGCMs. The results show that the tendency bias correction (TBC) eliminates the jet bias and substantially increases the precipitation over the Great Plains. These changes are accompanied by much improved (increased) storm-track activity throughout the northern midlatitudes. For the coupled model, the atmospheric TBCs produce substantial improvements in the simulated mean climate and its variability, including a much reduced SST warm bias, more realistic ENSO-related SST variability and teleconnections, and much improved subtropical jets and related submonthly transient wave activity. Despite these improvements, the improvement in subseasonal and seasonal forecast skill over North America is only modest at best. The reasons for this, which are presumably relevant to any forecast system, involve the competing influences of predictability loss with time and the time it takes for climate drift to first have a significant impact on forecast skill.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Siegfried D. Schubert, siegfried.d.schubert@nasa.gov

Abstract

We revisit the bias correction problem in current climate models, taking advantage of state-of-the-art atmospheric reanalysis data and new data assimilation tools that simplify the estimation of short-term (6 hourly) atmospheric tendency errors. The focus is on the extent to which correcting biases in atmospheric tendencies improves the model’s climatology, variability, and ultimately forecast skill at subseasonal and seasonal time scales. Results are presented for the NASA GMAO GEOS model in both uncoupled (atmosphere only) and coupled (atmosphere–ocean) modes. For the uncoupled model, the focus is on correcting a stunted North Pacific jet and a dry bias over the central United States during boreal summer—long-standing errors that are indeed common to many current AGCMs. The results show that the tendency bias correction (TBC) eliminates the jet bias and substantially increases the precipitation over the Great Plains. These changes are accompanied by much improved (increased) storm-track activity throughout the northern midlatitudes. For the coupled model, the atmospheric TBCs produce substantial improvements in the simulated mean climate and its variability, including a much reduced SST warm bias, more realistic ENSO-related SST variability and teleconnections, and much improved subtropical jets and related submonthly transient wave activity. Despite these improvements, the improvement in subseasonal and seasonal forecast skill over North America is only modest at best. The reasons for this, which are presumably relevant to any forecast system, involve the competing influences of predictability loss with time and the time it takes for climate drift to first have a significant impact on forecast skill.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Siegfried D. Schubert, siegfried.d.schubert@nasa.gov
Save
  • Achuthavarier, D., H. Wang, S. D. Schubert, and M. Sienkiewicz, 2017: Impact of DYNAMO observations on the NASA GEOS-5 reanalysis and the representation of the MJO initiation over the tropical Indian Ocean. J. Geophys. Res. Atmos., 122, 179201, https://doi.org/10.1002/2016JD025363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., and G. L. Stephens, 2011: Spatial statistics of likely convective clouds in CloudSat data. J. Geophys. Res., 116, D04104, https://doi.org/10.1029/2010JD014444.

    • Search Google Scholar
    • Export Citation
  • Bhargava, K., E. Kalnay, J. A. Carton, and F. Yang, 2018: Estimation of systematic errors in the GFS using analysis increments. J. Geophys. Res. Atmos., 123, 16261637, https://doi.org/10.1002/2017JD027423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, A. J., 2016: Multivariate bias correction of climate model output: Matching marginal distributions and intervariable dependence structure. J. Climate, 29, 70457064, https://doi.org/10.1175/JCLI-D-15-0679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and Y. Fu, 2002: Interdecadal variations in Northern Hemisphere winter storm track intensity. J. Climate, 15, 642658, https://doi.org/10.1175/1520-0442(2002)015<0642:IVINHW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, Y., S. D. Schubert, S.-J. Lin, S. Nebuda, and B.-W. Shen, 2001: The climate of the FVCCM-3 model. NASA Tech. Memo. NASA/TM-2001-104606, Vol. 20, 127 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010110948.pdf.

  • Chen, L.-C., H. van den Dool, E. Becker, and Q. Zhang, 2017: ENSO precipitation and temperature forecasts in the North American Multimodel Ensemble: Composite analysis and validation. J. Climate, 30, 11031125, https://doi.org/10.1175/JCLI-D-15-0903.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., S. M. J. Nowicki, B. Zhao, and M. J. Suarez, 2014: Evaluation of the surface representation of the Greenland Ice Sheet in a general circulation model. J. Climate, 27, 48354856, https://doi.org/10.1175/JCLI-D-13-00635.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danforth, C. M., E. Kalnay, and T. Miyoshi, 2007: Estimating and correcting global weather model error. Mon. Wea. Rev., 135, 281299, https://doi.org/10.1175/MWR3289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., and A. Y. Hou, 1999: Empirical correction of a dynamical model. Part I: Fundamental issues. Mon. Wea. Rev., 127, 25332545, https://doi.org/10.1175/1520-0493(1999)127<2533:ECOADM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., M. P. Hoerling, and J. K. Eischeid, 2001: ENSO variability, teleconnections and climate change. Int. J. Climatol., 21, 18451862, https://doi.org/10.1002/joc.631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866, https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter09_FINAL.pdf.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579, https://doi.org/10.5194/os-1-45-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, C. E., and W. Lipscomb, 2010: CICE: The Los Alamos Sea Ice Model documentation and software user’s manual, version 4.0. Tech. Rep. LA-CC-06-012, 76 pp.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Jong, B.-T., M. Ting, R. Seager, N. Henderson, and D. E. Lee, 2018: Role of equatorial Pacific SST forecast error in the late winter California precipitation forecast for the 2015/16 El Niño. J. Climate, 31, 839852, https://doi.org/10.1175/JCLI-D-17-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B., and Coauthors, 2014: The North American Multi-Model Ensemble (NMME): Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, https://doi.org/10.1175/BAMS-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a general model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, https://doi.org/10.1029/2000JD900327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lachmy, O., and N. Harnik, 2016: Wave and jet maintenance in different flow regimes. J. Atmos. Sci., 73, 24652484, https://doi.org/10.1175/JAS-D-15-0321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1978: Objective methods for weather prediction. Annu. Rev. Fluid Mech., 10, 107128, https://doi.org/10.1146/annurev.fl.10.010178.000543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., W. Dong, M. Zhang, Y. Xie, W. Xue, J. Huang, and Y. Luo, 2017: Causes of model dry and warm bias over central U.S. and impact on climate projections. Nat. Commun., 8, 881, https://doi.org/10.1038/s41467-017-02011-3; Corrigendum, 9, 149, https://doi.org/10.1038/s41467-017-02011-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa-Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, https://doi.org/10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orbe, C., L. D. Oman, S. E. Strahan, D. W. Waugh, S. Pawson, L. L. Takacs, and A. M. Molod, 2017: Large-scale atmospheric transport in GEOS replay simulations. J. Adv. Model. Earth Syst., 9, 25452560, https://doi.org/10.1002/2017MS001053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, https://doi.org/10.1016/j.jcp.2007.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 1997: Dissipation dependence of the jet latitude. J. Climate, 10, 176182, https://doi.org/10.1175/1520-0442(1997)010<0176:DDOTJL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., 1992: Response of the NMC MRF model to systematic error correction within integration. Mon. Wea. Rev., 120, 345360, https://doi.org/10.1175/1520-0493(1992)120<0345:ROTNMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schemm, J.-K. E., and A. J. Faller, 1986: Statistical corrections to numerical predictions. Part IV. Mon. Wea. Rev., 114, 24022417, https://doi.org/10.1175/1520-0493(1986)114<2402:SCTNPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S., H. Wang, and M. Suarez, 2011: Warm season subseasonal variability and climate extremes in the Northern Hemisphere: The role of stationary Rossby waves. J. Climate, 24, 47734792, https://doi.org/10.1175/JCLI-D-10-05035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S., H. Wang, R. D. Koster, M. J. Suarez, and P. Ya. Groisman, 2014: Northern Eurasian heat waves and droughts. J. Climate, 27, 31693207, https://doi.org/10.1175/JCLI-D-13-00360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and N. Henderson, 2016: On the role of tropical ocean forcing of the persistent North American West Coast ridge of winter 2013/14. J. Climate, 29, 80278049, https://doi.org/10.1175/JCLI-D-16-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Hoerling, S. Schubert, H. Wang, B. Lyon, A. Kumar, J. Nakamura, and N. Henderson, 2015: Causes of the 2011–14 California drought. J. Climate, 28, 69977024, https://doi.org/10.1175/JCLI-D-14-00860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takacs, L. L., M. J. Suárez, and R. Todling, 2018: The stability of incremental analysis update. Mon. Wea. Rev., 146, 32593275, https://doi.org/10.1175/MWR-D-18-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and S. Schubert, 2014: Causes of the extreme dry conditions over California during early 2013 [in “Explaining Extreme Events of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95 (9), S7S11, https://doi.org/10.1175/1520-0477-95.9.S1.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., S. Schubert, and R. D. Koster, 2017: North American drought and links to northern Eurasia: The role of stationary Rossby waves. Climate Extremes: Mechanisms and Potential Prediction, Geophys. Monogr., Vol. 226, Amer. Geophys. Union, 195–221, https://doi.org/10.1002/9781119068020.ch12.

    • Crossref
    • Export Citation
  • Xue, H.-L., X.-S. Shen, and J.-F. Chou, 2013: A forecast error correction method in numerical weather prediction by using the recent multiple-time evolution data. Adv. Atmos. Sci., 30, 12491259, https://doi.org/10.1007/s00376-013-2274-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H., J. Huang, W. Li, and G. Feng, 2014a: Development of the analogue-dynamical method for error correction of numerical forecasts. J. Meteor. Res., 28, 934947, https://doi.org/10.1007/s13351-014-4077-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H., J. Huang, and J. Chou, 2014b: Improvement of medium-range forecasts using the analogue-dynamical method. Mon. Wea. Rev., 142, 15701587, https://doi.org/10.1175/MWR-D-13-00250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1846 979 51
PDF Downloads 842 153 12