• Barnes, E. A., L. M. Polvani, and A. H. Sobel, 2013: Model projections of atmospheric steering of Sandy-like superstorms. Proc. Natl. Acad. Sci. USA, 110, 15 21115 215, https://doi.org/10.1073/pnas.1308732110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., and L. M. Leslie, 2009: Links between tropical cyclone activity and Madden–Julian oscillation phase in the North Atlantic and northeast Pacific basins. Mon. Wea. Rev., 137, 727744, https://doi.org/10.1175/2008MWR2602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, M., T. Li, M. Peng, and X. Y. Shen, 2015: Interactions between Typhoon Megi (2010) and a low-frequency monsoon gyre. J. Atmos. Sci., 72, 26822702, https://doi.org/10.1175/JAS-D-14-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blake, E. S., T. B. Kimberlain, R. J. Berg, J. P. Cangialosi, and J. L. Beven II, 2013: Tropical cyclone report: Hurricane Sandy (AL182012) 22–29 October 2012. NOAA/National Hurricane Center Tech. Rep. AL182012, 157 pp., http://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf.

  • Cao, X., T. Li, M. Peng, W. Chen, and G. Chen, 2014: Effects of monsoon trough intraseasonal oscillation on tropical cyclogenesis over the western North Pacific. J. Atmos. Sci., 71, 46394660, https://doi.org/10.1175/JAS-D-13-0407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, L. E., III, and R. L. Elsberry, 1990: Observational evidence for predictions of tropical cyclone propagation relative to environmental steering. J. Atmos. Sci., 47, 542546, https://doi.org/10.1175/1520-0469(1990)047<0542:OEFPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, L. E., III, and R. L. Elsberry, 1995: Monsoonal interactions leading to sudden tropical cyclone track changes. Mon. Wea. Rev., 123, 265290, https://doi.org/10.1175/1520-0493(1995)123<0265:MILTST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic Oscillation. Nature, 455, 523, https://doi.org/10.1038/nature07286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 13541374, https://doi.org/10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km resolution general circulation model. J. Climate, 26, 380398, https://doi.org/10.1175/JCLI-D-12-00061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, P., M. P. Hoerling, and R. M. Dole, 2001: The origin of the subtropical anticyclones. J. Atmos. Sci., 58, 18271835, https://doi.org/10.1175/1520-0469(2001)058<1827:TOOTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2007: Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon. J. Climate, 20, 37513767, https://doi.org/10.1175/JCLI4221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417, https://doi.org/10.1175/MWR3204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, B., T. Li, M. Peng, and F. Weng, 2007: Analysis of tropical cyclogenesis in the western North Pacific for 2000 and 2001. Wea. Forecasting, 22, 763780, https://doi.org/10.1175/WAF1013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greene, C. H., J. A. Francis, and B. C. Monger, 2013: Superstorm Sandy: A series of unfortunate events? Oceanography, 26, 89, https://doi.org/10.5670/oceanog.2013.11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, T. M., and A. H. Sobel, 2013: On the impact angle of Hurricane Sandy’s New Jersey landfall. Geophys. Res. Lett., 40, 23122315, https://doi.org/10.1002/grl.50395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and E. D. Maloney, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part II: Stochastic barotropic modeling. J. Atmos. Sci., 58, 25592570, https://doi.org/10.1175/1520-0469(2001)058<2559:TMJOBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., E. D. Maloney, and S. W. Son, 2017: Madden–Julian oscillation Pacific teleconnections: The impact of the basic state and MJO representation in general circulation models. J. Climate, 30, 45674587, https://doi.org/10.1175/JCLI-D-16-0789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40, 328342, https://doi.org/10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T. Li, and C.-H. Tsou, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part I: Energetics diagnosis. J. Climate, 24, 927941, https://doi.org/10.1175/2010JCLI3833.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T. Li, L. You, J. Gao, and H. Ren, 2015: A spatial–temporal projection model for 10–30 day rainfall forecast in South China. Climate Dyn., 44, 12271244, https://doi.org/10.1007/s00382-014-2215-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarvinen, B. R., C. J. Neumann, and M. A. S. Davis, 1984: A tropical cyclone data tape for the North Atlantic Basin, 1886–1983: Contents, limitations and uses. NOAA Tech. Memo. NWS NHC 22, 21 pp., https://repository.library.noaa.gov/view/noaa/7069.

  • Jiang, X., and T. Li, 2005: Reinitiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean. J. Climate, 18, 37773795, https://doi.org/10.1175/JCLI3516.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039, https://doi.org/10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the Madden–Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120, 47184748, https://doi.org/10.1002/2014JD022375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieper, M. E., C. W. Landsea, and J. L. Beven II, 2016: A reanalysis of Hurricane Camille. Bull. Amer. Meteor. Soc., 97, 367384, https://doi.org/10.1175/BAMS-D-14-00137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., A. H. Sobel, E. D. Maloney, D. M. Frierson, and I. Kang, 2011: A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. J. Climate, 24, 55065520, https://doi.org/10.1175/2011JCLI4177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2010: On the Madden–Julian oscillation–Atlantic hurricane relationship. J. Climate, 23, 282293, https://doi.org/10.1175/2009JCLI2978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., S. J. Camargo, and M. Sitkowski, 2010: Climate modulation of North Atlantic hurricane tracks. J. Climate, 23, 30573076, https://doi.org/10.1175/2010JCLI3497.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2015: Hurricane Sandy before 1900 and after 2100. Bull. Amer. Meteor. Soc., 96, 547560, https://doi.org/10.1175/BAMS-D-14-00123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., and N.-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon. Wea. Rev., 118, 18881913, https://doi.org/10.1175/1520-0493(1990)118<1888:OSAPCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C. Y., S. J. Camargo, F. Vitart, A. H. Sobel, and M. K. Tippett, 2018: Subseasonal tropical cyclone genesis prediction and MJO in the S2S dataset. Wea. Forecasting, 33, 967988, https://doi.org/10.1175/WAF-D-17-0165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., and W. Zhou, 2013: Modulation of western North Pacific tropical cyclone activity by the ISO. Part I: Genesis and intensity. J. Climate, 26, 29042918, https://doi.org/10.1175/JCLI-D-12-00210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., 2006: Origin of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci., 63, 10931102, https://doi.org/10.1175/JAS3676.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., 2012: Synoptic and climatic aspects of tropical cyclogenesis in western North Pacific. Cyclone: Formation, Triggers and Control, K. Oouchi and H. Fudeyasu, Eds., Nova Science Publishers, 61–94.

  • Li, T., 2014: Recent advance in understanding the dynamics of the Madden–Julian oscillation. J. Meteor. Res., 28, 133, https://doi.org/10.1007/S13351-014-3087-6.

    • Search Google Scholar
    • Export Citation
  • Li, T., and Y. Zhu, 1991: Analysis and modeling of tropical cyclone motion: I: Asymmetric structure and sudden change of tracks. Sci. China, 34, 222233.

    • Search Google Scholar
    • Export Citation
  • Li, T., and B. Fu, 2006: Tropical cyclogenesis associated with Rossby wave energy dispersion of a preexisting typhoon. Part I: Satellite data analyses. J. Atmos. Sci., 63, 13771389, https://doi.org/10.1175/JAS3692.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., B. Fu, X. Ge, B. Wang, M. Peng, 2003: Satellite data analysis and numerical simulation of tropical cyclone formation. Geophys. Res. Lett., 30, 2122, https://doi.org/10.1029/2003GL018556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Climate, 22, 364380, https://doi.org/10.1175/2008JCLI2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, N., R. E. Kopp, B. P. Horton, and J. P. Donnelly, 2016: Hurricane Sandy’s flood frequency increasing from year 1800 to 2100. Proc. Natl. Acad. Sci. USA, 113, 12 07112 075, https://doi.org/10.1073/pnas.1604386113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., T. Li, and W.-C. Zhou, 2018: Impact of 10–60-day low-frequency steering flows on straight northward-moving typhoon tracks over the western North Pacific. J. Meteor. Res., 32, 394409, https://doi.org/10.1007/s13351-018-7035-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopeman, M., G. Deodatis, and G. Franco, 2015: Extreme storm surge hazard estimation in lower Manhattan. Nat. Hazards Rev., 78, 355391, https://doi.org/10.1007/s11069-015-1718-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2000: Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian oscillation. Science, 287, 20022004, https://doi.org/10.1126/science.287.5460.2002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460, https://doi.org/10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and M. J. Dickinson, 2003: The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances. J. Atmos. Sci., 60, 21532168, https://doi.org/10.1175/1520-0469(2003)060<2153:TIOATE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011, https://doi.org/10.1256/qj.02.123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattingly, K. S., J. T. McLeod, J. A. Knox, J. M. Shepherd, and T. L. Mote, 2015: A climatological assessment of Greenland blocking conditions associated with the track of Hurricane Sandy and historical North Atlantic hurricanes. Int. J. Climatol., 35, 746760, https://doi.org/10.1002/joc.4018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: The association between intraseasonal oscillations and tropical storms in the Atlantic basin. Mon. Wea. Rev., 128, 40974107, https://doi.org/10.1175/1520-0493(2000)129<4097:TABIOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., J. Gratz, C. W. Landsea, D. Collins, M. A. Saunders, and R. Musulin, 2008: Normalized hurricane damage in the United States: 1900–2005. Nat. Hazards Rev., 9, 2942, https://doi.org/10.1061/(ASCE)1527-6988(2008)9:1(29).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, J., and W. A. Robinson, 1993: On the Rossby wave source and the steady linear response to tropical forcing. J. Atmos. Sci., 50, 18191823, https://doi.org/10.1175/1520-0469(1993)050<1819:OTRWSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodrigues, R. R., and T. Woollings, 2017: Impact of atmospheric blocking on South America in austral summer. J. Climate, 30, 18211837, https://doi.org/10.1175/JCLI-D-16-0493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and S.-W. Son, 2012: The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian oscillation during northern winter. J. Atmos. Sci., 69, 7996, https://doi.org/10.1175/2011JAS3686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. D. Maloney, 2000: Effect of ENSO and the MJO on western North Pacific tropical cyclones. Geophys. Res. Lett., 27, 17391742, https://doi.org/10.1029/1999GL011043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., J. M. Slingo, P. M. Inness, and W. K.-M. Lau, 1997: On the maintenance and initiation of the intraseasonal oscillation in the NCEP/NCAR reanalysis and in the GLA and UKMO AMIP simulations. Climate Dyn., 13, 769795, https://doi.org/10.1007/S003820050197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tam, C. Y., and T. Li, 2006: The origin and dispersion characteristics of the observed tropical summertime synoptic-scale waves over the western Pacific. Mon. Wea. Rev., 134, 16301646, https://doi.org/10.1175/MWR3147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016, https://doi.org/10.1175/JCLI-D-14-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impact on Asian–Australian monsoon variability. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., T. Li, E. Maloney, and B. Wang, 2017: Fundamental causes of propagating and nonpropagating MJOs in MJOTF/GASS models. J. Climate, 30, 37433769, https://doi.org/10.1175/JCLI-D-16-0765.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., and Coauthors, 2015a: Beyond weather time-scale prediction for Hurricane Sandy and Super Typhoon Haiyan in a global climate model. Mon. Wea. Rev., 143, 524535, https://doi.org/10.1175/MWR-D-14-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., M. Zhao, X. Jiang, S.-J. Lin, T. Li, X. Fu, and G. Vecchi, 2015b: The 3–4-week MJO prediction skill in a GFDL coupled model. J. Climate, 28, 53515364, https://doi.org/10.1175/JCLI-D-15-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., and T. Li, 2019: Basin dependence of the MJO modulating tropical cyclone genesis. Climate Dyn., 52, 60816096, https://doi.org/10.1007/s00382-018-4502-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2018: The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 1. Simulation characteristics with prescribed SSTs. J. Adv. Model. Earth Syst., 10, 691734, https://doi.org/10.1002/2017MS001208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., and T. Li, 2010: Upscale feedback of tropical synoptic variability to intraseasonal oscillations through the nonlinear rectification of the surface latent heat flux. J. Climate, 23, 57385754, https://doi.org/10.1175/2010JCLI3468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and T. Li, 2016: A new paradigm for continental U.S. summer rainfall variability: Asia–North America teleconnection. J. Climate, 29, 73137327, https://doi.org/10.1175/JCLI-D-16-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 84 84 20
PDF Downloads 26 26 9

On the Westward Turning of Hurricane Sandy (2012): Effect of Atmospheric Intraseasonal Oscillations

View More View Less
  • 1 Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
  • 2 International Pacific Research Center, and Department of Atmospheric Sciences, School of Ocean, Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
  • 3 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, and University Corporation for Atmospheric Research, Boulder, Colorado
  • 4 General Dynamics Information Technology/Naval Research Laboratory, Monterey, California
© Get Permissions
Restricted access

Abstract

Hurricane Sandy (2012) experienced an unusual westward turning and made landfall in New Jersey after its northward movement over the Atlantic Ocean. The landfall caused severe casualties and great economic losses. The westward turning took place in the midlatitude Atlantic where the climatological mean wind is eastward. The cause of this unusual westward track is investigated through both observational analysis and model simulations. The observational analysis indicates that the hurricane steering flow was primarily controlled by atmospheric intraseasonal oscillation (ISO), which was characterized by a pair of anticyclonic and cyclonic circulation systems. The anticyclone to the north was part of a global wave train forced by convection over the tropical Indian Ocean through Rossby wave energy dispersion, and the cyclone to the south originated from the tropical Atlantic through northward propagation. Hindcast experiments using a global coupled model show that the model is able to predict the observed circulation pattern as well as the westward steering flow 6 days prior to Sandy’s landfall. Sensitivity experiments with different initial dates confirm the important role of the ISO in establishing the westward steering flow in the midlatitude Atlantic. Thus the successful numerical model experiments suggest a potential for extended-range dynamical tropical cyclone track predictions.

Current affiliation: University of Colorado Colorado Springs, Colorado Springs, Colorado.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tim Li, timli@hawaii.edu

Abstract

Hurricane Sandy (2012) experienced an unusual westward turning and made landfall in New Jersey after its northward movement over the Atlantic Ocean. The landfall caused severe casualties and great economic losses. The westward turning took place in the midlatitude Atlantic where the climatological mean wind is eastward. The cause of this unusual westward track is investigated through both observational analysis and model simulations. The observational analysis indicates that the hurricane steering flow was primarily controlled by atmospheric intraseasonal oscillation (ISO), which was characterized by a pair of anticyclonic and cyclonic circulation systems. The anticyclone to the north was part of a global wave train forced by convection over the tropical Indian Ocean through Rossby wave energy dispersion, and the cyclone to the south originated from the tropical Atlantic through northward propagation. Hindcast experiments using a global coupled model show that the model is able to predict the observed circulation pattern as well as the westward steering flow 6 days prior to Sandy’s landfall. Sensitivity experiments with different initial dates confirm the important role of the ISO in establishing the westward steering flow in the midlatitude Atlantic. Thus the successful numerical model experiments suggest a potential for extended-range dynamical tropical cyclone track predictions.

Current affiliation: University of Colorado Colorado Springs, Colorado Springs, Colorado.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tim Li, timli@hawaii.edu
Save