• Anderson, C. J., and R. W. Arritt, 1998: Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993. Mon. Wea. Rev., 126, 578599, https://doi.org/10.1175/1520-0493(1998)126<0578:MCCAPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., and K. W. Howard, 1991: Mesoscale convective complexes over the United States during 1986 and 1987. Mon. Wea. Rev., 119, 15751589, https://doi.org/10.1175/1520-0493(1991)119<1575:MCCOTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, M., and J. M. Wallace, 2015: Cluster analysis of Northern Hemisphere wintertime 500-hPa flow regimes during 1920–2014. J. Atmos. Sci., 72, 35973608, https://doi.org/10.1175/JAS-D-15-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and M. B. Richman, 2004: An observational study of derecho-producing convective systems. Wea. Forecasting, 19, 320337, https://doi.org/10.1175/1520-0434(2004)019<0320:AOSODC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Y. Hwang, and D. J. Stensrud, 2010: Environmental factors in the upscale growth and longevity of MCSs derived from rapid update cycle analyses. Mon. Wea. Rev., 138, 35143539, https://doi.org/10.1175/2010MWR3233.1; Corrigendum, 139, 2686–2688, https://doi.org/10.1175/MWR-D-11-00064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooney, J. W., K. P. Bowman, C. R. Homeyer, and T. M. Fenske, 2018: Ten-year analysis of tropopause-overshooting convection using GridRad data. J. Geophys. Res. Atmos., 123, 329343, https://doi.org/10.1002/2017JD027718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim Reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., L. R. Leung, S. Hagos, R. A. Houze, C. D. Burleyson, and K. Balaguru, 2016: More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nat. Commun., 7, 13429, https://doi.org/10.1038/ncomms13429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., L. R. Leung, R. A. Houze, S. Hagos, J. Hardin, Q. Yang, B. Han, and J. Fan, 2018: Structure and evolution of mesoscale convective systems: Sensitivity to cloud microphysics in convection-permitting simulations over the United States. J. Adv. Model. Earth Syst., 10, 14701494, https://doi.org/10.1029/2018MS001305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., R. A. Houze, R. Leung, F. Song, J. Hardin, J. Wang, W. I. Gustafson Jr., and C. R. Homeyer, 2019: Spatiotemporal characteristics and large-scale environments of mesoscale convective systems east of the Rocky Mountains. J. Climate, https://doi.org/10.1175/JCLI-D-19-0137.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and R. A. Maddox, 1981: Convectively driven mesoscale weather systems aloft. Part I: Observations. J. Appl. Meteor., 20, 919, https://doi.org/10.1175/1520-0450(1981)020<0009:CDMWSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and G. S. Forbes, 2001: Mesoscale convective systems. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor.Soc., 323358, https://doi.org/10.1175/0065-9401-28.50.323.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Appl. Meteor. Climatol., 25, 13331345, https://doi.org/10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., J. D. Murphy, and J. S. Kain, 1994: Warm core vortex amplification over land. J. Atmos. Sci., 51, 17801807, https://doi.org/10.1175/1520-0469(1994)051<1780:WCVAOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., L. R. Leung, C. Zhao, and S. Hagos, 2017: Sensitivity of summer precipitation to model resolution and convective parameterizations across gray zone resolutions. J. Geophys. Res. Atmos., 122, 27142733, https://doi.org/10.1002/2016JD025896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., T. L. Mote, and H. E. Brooks, 2014: Severe-thunderstorm reanalysis environments and collocated radiosonde observations. J. Appl. Meteor. Climatol., 53, 742751, https://doi.org/10.1175/JAMC-D-13-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M. and W. S. Ashley, 2019: A radar-based climatology of mesoscale convective systems in the United States. J. Climate, 32, 15911606, https://doi.org/10.1175/JCLI-D-18-0559.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoch, J., and P. Markowski, 2005: A climatology of springtime dryline position in the U.S. Great Plains region. J. Climate, 18, 21322137, https://doi.org/10.1175/JCLI3392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and K. P. Bowman, 2017: Algorithm description document for version 3.1 of the three-dimensional gridded NEXRAD WSR-88D radar (GridRad) dataset. Tech. rep., 23 pp., http://gridrad.org/pdf/GridRad-v3.1-Algorithm-Description.pdf.

  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Houze, R. A., 2018: 100 years of research on mesoscale convective systems. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Metor. Soc., 17.1–17.54, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0001.1.

    • Crossref
    • Export Citation
  • Janowiak, J., B. Joyce, and P. Xie, 2017: NCEP/CPC L3 Half Hourly 4km Global (60°S–60°N) Merged IR V1. A. Savtchenko, Ed., Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed 1 February 2018, https://doi.org/10.5067/P4HZB9N27EKU.

    • Crossref
    • Export Citation
  • Johns, R. H., 1982: A synoptic climatology of northwest-flow severe weather outbreaks. Part I: Nature and significance. Mon. Wea. Rev., 110, 16531663, https://doi.org/10.1175/1520-0493(1982)110<1653:ASCONF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., 1984: A synoptic climatology of northwest-flow severe weather outbreaks. Part II: Meteorological parameters and synoptic patterns. Mon. Wea. Rev., 112, 449464, https://doi.org/10.1175/1520-0493(1984)112<0449:ASCONF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., 1993: Meteorological conditions associated with bow echo development in convective storms. Wea. Forecasting, 8, 294299, https://doi.org/10.1175/1520-0434(1993)008<0294:MCAWBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyser, D. A., and D. R. Johnson, 1984: Effects of diabatic heating on the ageostrophic circulation of an upper tropospheric jet streak. Mon. Wea. Rev., 112, 17091724, https://doi.org/10.1175/1520-0493(1984)112<1709:EODHOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, A. T., and A. D. Kennedy, 2019: North American supercell environments in atmospheric reanalysis and RUC-2. J. Appl. Meteor. Climatol., 58, 7192, https://doi.org/10.1175/JAMC-D-18-0015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 2001: Self-Organizing Maps. Springer, 502 pp.

  • Lee, S., T. Gong, N. Johnson, S. B. Feldstein, and D. Pollard, 2011: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 43504367, https://doi.org/10.1175/2011JCLI4003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., 2011: GCIP/EOP Surface: Precipitation NCEP/EMC 4KM Gridded Data (GRIB) Stage IV Data. Version 1.0. UCAR/NCAR, Earth Observing Laboratory, Accessed November 2017, https://doi.org/10.5065/D6PG1QDD.

    • Crossref
    • Export Citation
  • Lin, Y., W. Dong, M. Zhang, Y. Xie, W. Xue, J. Huang, and Y. Luo, 2017: Causes of model dry and warm bias over central U.S. and impact on climate projections. Nat. Commun., 8, 881, https://doi.org/10.1038/s41467-017-01040-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 14751493, https://doi.org/10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-α-scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, https://doi.org/10.1175/1520-0477-60.2.115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721, https://doi.org/10.1175/MWR3200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., 1971: Mesoscale modification of synoptic situations from thunderstorm development as revealed by ATS III and aerological data. J. Appl. Meteor., 10, 11031121, https://doi.org/10.1175/1520-0450(1971)010<1103:MMOSSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkey, D. J., and R. A. Maddox, 1985: A numerical investigation of a mesoscale convective system. Mon. Wea. Rev., 113, 553566, https://doi.org/10.1175/1520-0493(1985)113<0553:ANIOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2014: Objective categorization of heavy-rain-producing MCS synoptic types by rotated principal component analysis. Mon. Wea. Rev., 142, 17161737, https://doi.org/10.1175/MWR-D-13-00295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pokharel, B., S. Y. Wang, J. Meyer, R. Gillies, and Y. Lin, 2019: Climate of the weakly-forced yet high-impact convective storms throughout the Ohio River Valley and Mid-Atlantic United States. Climate Dyn., 52, 57095721, https://doi.org/10.1007/S00382-018-4472-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reusch, D. B., R. B. Alley, and B. C. Hewitson, 2007: North Atlantic climate variability from a self-organizing map perspective. J. Geophys. Res., 112, D02104, https://doi.org/10.1029/2006JD007460.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, https://doi.org/10.1175/MWR2899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2006: Characteristics of U.S. extreme rain events during 1999–2003. Wea. Forecasting, 21, 6985, https://doi.org/10.1175/WAF900.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smull, B. F., and J. A. Augustine, 1993: Multiscale analysis of a mature mesoscale convective complex. Mon. Wea. Rev., 121, 103132, https://doi.org/10.1175/1520-0493(1993)121<0103:MAOAMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Effects of a persistent, midlatitude mesoscale region of convection on the large-scale environment during the warm season. J. Atmos. Sci., 53, 35033527, https://doi.org/10.1175/1520-0469(1996)053<3503:EOPMMR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., and Coauthors, 2018: CAUSES: Attribution of surface radiation biases in NWP and climate models near the U.S. Southern Great Plains. J. Geophys. Res. Atmos., 123, 36123644, https://doi.org/10.1002/2017JD027188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., X. Dong, A. Kennedy, B. Hagenhoff, and B. Xi, 2019: A regime-based evaluation of southern and northern Great Plains warm-season precipitation events in WRF. Wea. Forecasting, 34, 805831, https://doi.org/10.1175/waf-d-19-0025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., T.-C. Chen, and J. Correia, 2011a: Climatology of summer midtropospheric perturbations in the US northern plains. Part I: Influence on northwest flow severe weather outbreaks. Climate Dyn., 36, 793810, https://doi.org/10.1007/s00382-009-0696-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., T.-C. Chen, and E. S. Takle, 2011b: Climatology of summer midtropospheric perturbations in the US northern plains. Part II: Large-scale effects of the Rocky Mountains on genesis. Climate Dyn., 36, 12211237, https://doi.org/10.1007/s00382-010-0765-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolf, B. J., and D. R. Johnson, 1995: The mesoscale forcing of a midlatitude upper-tropospheric jet streak by a simulated convective system. Part I: Mass circulation and ageostrophic processes. Mon. Wea. Rev., 123, 10591087, https://doi.org/10.1175/1520-0493(1995)123<1059:TMFOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., R. A. Houze Jr., L. R. Leung, and Z. Feng, 2017: Environments of long-lived mesoscale convective systems over the central United States in convection permitting climate simulations. J. Geophys. Res., 122, 13 28813 307, https://doi.org/10.1002/2017JD027033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1982: Use of a conceptual model of the life cycle of mesoscale convective systems to improve very-short-range forecasts. Nowcasting, K. Browning, Ed., Academic Press, 191–221.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 229 229 45
PDF Downloads 182 182 35

Contrasting Spring and Summer Large-Scale Environments Associated with Mesoscale Convective Systems over the U.S. Great Plains

View More View Less
  • 1 Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
  • 2 Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, and Department of Atmospheric Sciences, University of Washington, Seattle, Washington
  • 3 Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
  • 4 School of Meteorology, University of Oklahoma, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

Mesoscale convective systems (MCSs) are frequently observed over the U.S. Great Plains during boreal spring and summer. Here, four types of synoptically favorable environments for spring MCSs and two types each of synoptically favorable and unfavorable environments for summer MCSs are identified using self-organizing maps (SOMs) with inputs from observational data. During spring, frontal systems providing a lifting mechanism and an enhanced Great Plains low-level jet (GPLLJ) providing anomalous moisture are important features identified by SOM analysis for creating favorable dynamical and thermodynamic environments for MCS development. During summer, the composite MCS environment shows small positive convective available potential energy (CAPE) and convective inhibition (CIN) anomalies, which are in stark contrast with the large positive CAPE and negative CIN anomalies in spring. This contrast suggests that summer convection may occur even with weak large-scale dynamical and thermodynamic perturbations so MCSs may be inherently less predictable in summer. The two synoptically favorable environments identified in summer have frontal characteristics and an enhanced GPLLJ, but both shift north compared to spring. The two synoptically unfavorable environments feature enhanced upper-level ridges, but differ in the strength of the GPLLJ. In both seasons, MCS precipitation amount, area, and rate are much larger in the frontal-related MCSs than in nonfrontal MCSs. A large-scale index constructed using pattern correlation between large-scale environments and the synoptically favorable SOM types is found to be skillful for estimating MCS number, precipitation rate, and area in spring, but its explanatory power decreases significantly in summer. The low predictability of summer MCSs deserves further investigation in the future.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0839.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fengfei Song, fengfei.song@pnnl.gov

Abstract

Mesoscale convective systems (MCSs) are frequently observed over the U.S. Great Plains during boreal spring and summer. Here, four types of synoptically favorable environments for spring MCSs and two types each of synoptically favorable and unfavorable environments for summer MCSs are identified using self-organizing maps (SOMs) with inputs from observational data. During spring, frontal systems providing a lifting mechanism and an enhanced Great Plains low-level jet (GPLLJ) providing anomalous moisture are important features identified by SOM analysis for creating favorable dynamical and thermodynamic environments for MCS development. During summer, the composite MCS environment shows small positive convective available potential energy (CAPE) and convective inhibition (CIN) anomalies, which are in stark contrast with the large positive CAPE and negative CIN anomalies in spring. This contrast suggests that summer convection may occur even with weak large-scale dynamical and thermodynamic perturbations so MCSs may be inherently less predictable in summer. The two synoptically favorable environments identified in summer have frontal characteristics and an enhanced GPLLJ, but both shift north compared to spring. The two synoptically unfavorable environments feature enhanced upper-level ridges, but differ in the strength of the GPLLJ. In both seasons, MCS precipitation amount, area, and rate are much larger in the frontal-related MCSs than in nonfrontal MCSs. A large-scale index constructed using pattern correlation between large-scale environments and the synoptically favorable SOM types is found to be skillful for estimating MCS number, precipitation rate, and area in spring, but its explanatory power decreases significantly in summer. The low predictability of summer MCSs deserves further investigation in the future.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0839.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fengfei Song, fengfei.song@pnnl.gov

Supplementary Materials

    • Supplemental Materials (PDF 1.75 MB)
Save