• Alkama, R., and A. Cescatti, 2016: Biophysical climate impacts of recent changes in global forest cover. Science, 351, 600604, https://doi.org/10.1126/science.aac8083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2015: The plumbing of land surface models: Benchmarking model performance. J. Hydrometeor., 16, 14251442, https://doi.org/10.1175/JHM-D-14-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bright, R. M., E. Davin, T. O’Halloran, J. Pongratz, K. Zhao, and A. Cescatti, 2017: Local temperature response to land cover and management change driven by non-radiative processes. Nat. Climate Change, 7, 296302, https://doi.org/10.1038/nclimate3250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brovkin, V., and Coauthors, 2006: Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Climate Dyn., 26, 587600, https://doi.org/10.1007/s00382-005-0092-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brovkin, V., and Coauthors, 2013: Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5 projections for the twenty-first century. J. Climate, 26, 68596881, https://doi.org/10.1175/JCLI-D-12-00623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., and P. A. Dirmeyer, 2016: Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling. Environ. Res. Lett., 11, 034002, https://doi.org/10.1088/1748-9326/11/3/034002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., and P. A. Dirmeyer, 2019: The relative importance among anthropogenic forcings of land use/land cover change in affecting temperature extremes. Climate Dyn., 52, 22692285, https://doi.org/10.1007/s00382-018-4250-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christidis, N., P. A. Stott, G. C. Hegerl, and R. A. Betts, 2013: The role of land use change in the recent warming of daily extreme temperatures. Geophys. Res. Lett., 40, 589594, https://doi.org/10.1002/grl.50159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Claussen, M., V. Brovkin, and A. Ganopolski, 2001: Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophys. Res. Lett., 28, 10111014, https://doi.org/10.1029/2000GL012471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davin, E. L., and N. de Noblet-Ducoudré, 2010: Climatic impact of global-scale deforestation: radiative versus nonradiative processes. J. Climate, 23, 97112, https://doi.org/10.1175/2009JCLI3102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Noblet-Ducoudré, N., and Coauthors, 2012: Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: Results from the first set of LUCID experiments. J. Climate, 25, 32613281, https://doi.org/10.1175/JCLI-D-11-00338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., A. Berg, P. Gentine, J. P. Krasting, B. R. Lintner, S. Malyshev, J. A. Santanello, and E. Shevliakova, 2017: The impact of anthropogenic land use and land cover change on regional climate extremes. Nat. Commun., 8, 989, https://doi.org/10.1038/s41467-017-01038-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flerchinger, G. N., M. L. Reba, T. E. Link, and D. Marks, 2015: Modeling temperature and humidity profiles within forest canopies. Agric. For. Meteor., 213, 251262, https://doi.org/10.1016/j.agrformet.2015.07.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forzieri, G., R. Alkama, D. G. Miralles, and A. Cescatti, 2017: Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science, 356, 11801184, https://doi.org/10.1126/science.aal1727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, R. A., J. I. House, J. Pongratz, G. R. van der Werf, R. S.. DeFries, M. C. Hansen, C. L. Quéré, and N. Ramankutty, 2012: Carbon emissions from land use and land-cover change. Biogeosciences, 9, 51255142, https://doi.org/10.5194/bg-9-5125-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., and Coauthors, 2011: Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117161, https://doi.org/10.1007/s10584-011-0153-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, M., and R. E. Dickinson, 2010: Land surface skin temperature climatology: Benefitting from the strengths of satellite observations. Environ. Res. Lett., 5, 044004, https://doi.org/10.1088/1748-9326/5/4/044004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juang, J., G. Katul, M. Siqueira, P. Stoy, and K. Novick, 2007: Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophys. Res. Lett., 34, L21408, https://doi.org/10.1029/2007GL031296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and T. N. Chase, 2010: Investigating the climate impacts of global land cover change in the Community Climate System Model. Int. J. Climatol., 30, 20662087, https://doi.org/10.1002/joc.2061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and Coauthors, 2012: Simulating the biogeochemical and biogeophysical impacts of transient land cover change and wood harvest in the Community Climate System Model (CCSM4) from 1850 to 2100. J. Climate, 25, 30713095, https://doi.org/10.1175/JCLI-D-11-00256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, X., and Coauthors, 2011: Observed increase in local cooling effect of deforestation at higher latitudes. Nature, 479, 384387, https://doi.org/10.1038/nature10588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lejeune, Q., S. I. Seneviratne, and E. L. Davin, 2017: Historical land-cover change impacts on climate: Comparative assessment of LUCID and CMIP5 multimodel experiments. J. Climate, 30, 14391459, https://doi.org/10.1175/JCLI-D-16-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lejeune, Q., E. L. Davin, L. Gudmundsson, J. Winckler, and S. I. Seneviratne, 2018: Historical deforestation locally increased the intensity of hot days in northern mid-latitudes. Nat. Climate Change, 8, 386390, https://doi.org/10.1038/s41558-018-0131-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., H. Chen, J. Wei, W. Hua, S. Sun, H. Ma, X. Li, and J. Li, 2018: Inconsistent responses of hot extremes to historical land use and cover change among the selected CMIP5 models. J. Geophys. Res., 123, 34973512, https://doi.org/10.1002/2017JD028161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., M. Zhao, S. Motesharrei, Q. Mu, E. Kalnay, and S. Li, 2015: Local cooling and warming effects of forests based on satellite observations. Nat. Commun., 6, 6603, https://doi.org/10.1038/ncomms7603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luyssaert, S., and Coauthors, 2014: Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Climate Change, 4, 389393, https://doi.org/10.1038/nclimate2196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmood, R., and Coauthors, 2014: Land cover changes and their biogeophysical effects on climate. Int. J. Climatol., 34, 929953, https://doi.org/10.1002/joc.3736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-4781STR, 257 pp., http://www.cesm.ucar.edu/models/ccsm4.0/clm/CLM4_Tech_Note.pdf.

  • Pitman, A., and Coauthors, 2012: Effects of land cover change on temperature and rainfall extremes in multi-model ensemble simulations. Earth Syst. Dyn., 3, 213231, https://doi.org/10.5194/esd-3-213-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pongratz, J., C. H. Reick, T. Raddatz, and M. Claussen, 2010: Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change. Geophys. Res. Lett., 37, L08702, https://doi.org/10.1029/2010GL043010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pulliainen, J. T., J. Grandell, and M. T. Hallikainen, 1997: Retrieval of surface temperature in boreal forest zone from SSM/I data. IEEE Trans. Geosci. Remote Sens., 35, 11881200, https://doi.org/10.1109/36.628786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, N. M., P. J. Lawrence, and X. Lee, 2017: Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. J. Geophys. Res. Biogeosci., 122, 903917, https://doi.org/10.1002/2016JG003653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, P., C. Delire, and J. Foley, 2004: Evaluating the influence of different vegetation biomes on the global climate. Climate Dyn., 23, 279302, https://doi.org/10.1007/s00382-004-0430-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoy, P. C., 2018: Deforestation intensifies hot days. Nat. Climate Change, 8, 366368, https://doi.org/10.1038/s41558-018-0153-6.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanden Broucke, S., S. Luyssaert, E. L. Davin, I. Janssens, and N. van Lipzig, 2015: New insights in the capability of climate models to simulate the impact of LUC based on temperature decomposition of paired site observations. J. Geophys. Res. Atmos., 120, 54175436, https://doi.org/10.1002/2015JD023095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vertenstein, M., A. Bertini, T. Craig, J. Edwards, M. Levy, A. Mai, and J. Schollenberger, 2013: CESM user’s guide (CESM1.2 release series user’s guide). 100 pp., http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/usersguide/ug.pdf.

  • Zhang, M., and Coauthors, 2014: Response of surface air temperature to small-scale land clearing across latitudes. Environ. Res. Lett., 9, 034002, https://doi.org/10.1088/1748-9326/9/3/034002.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 203 203 21
PDF Downloads 71 71 17

Differing Responses of the Diurnal Cycle of Land Surface and Air Temperatures to Deforestation

View More View Less
  • 1 Center for Ocean–Land–Atmosphere Studies, George Mason University, Fairfax, Virginia, and Climate and Atmospheric Sciences Section, Illinois State Water Survey, Prairie Research Institute, University of Illinois at Urbana–Champaign, Champaign, Illinois
  • 2 Center for Ocean–Land–Atmosphere Studies, George Mason University, Fairfax, Virginia
© Get Permissions
Restricted access

ABSTRACT

Recent studies have shown the impacts of historical land-use land-cover changes (i.e., deforestation) on hot temperature extremes; contradictory temperature responses have been found between studies using observations and climate models. However, different characterizations of surface temperature are sometimes used in the assessments: land surface skin temperature Ts is more commonly used in observation-based studies while near-surface air temperature T2m is more often used in model-based studies. The inconsistent use of temperature variables is not inconsequential, and the relationship between deforestation and various temperature changes can be entangled, which complicates comparisons between observations and model simulations. In this study, the responses in the diurnal cycle of summertime Ts and T2m to deforestation are investigated using the Community Earth System Model. For the daily maximum, opposite responses are found in Ts and T2m. Due to decreased surface roughness after deforestation, the heat at the land surface cannot be efficiently dissipated into the air, leading to a warmer surface but cooler air. For the daily minimum, strong warming is found in T2m, which exceeds daytime cooling and leads to overall warming in daily mean temperatures. After comparing several climate models, we find that the models agree in daytime land surface (Ts) warming, but different turbulent transfer characteristics produce discrepancies in T2m. Our work highlights the need to investigate the diurnal cycles of temperature responses carefully in land-cover change studies. Furthermore, consistent consideration of temperature variables should be applied in future comparisons involving observations and climate models.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0002.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liang Chen, liangch@illinois.edu

ABSTRACT

Recent studies have shown the impacts of historical land-use land-cover changes (i.e., deforestation) on hot temperature extremes; contradictory temperature responses have been found between studies using observations and climate models. However, different characterizations of surface temperature are sometimes used in the assessments: land surface skin temperature Ts is more commonly used in observation-based studies while near-surface air temperature T2m is more often used in model-based studies. The inconsistent use of temperature variables is not inconsequential, and the relationship between deforestation and various temperature changes can be entangled, which complicates comparisons between observations and model simulations. In this study, the responses in the diurnal cycle of summertime Ts and T2m to deforestation are investigated using the Community Earth System Model. For the daily maximum, opposite responses are found in Ts and T2m. Due to decreased surface roughness after deforestation, the heat at the land surface cannot be efficiently dissipated into the air, leading to a warmer surface but cooler air. For the daily minimum, strong warming is found in T2m, which exceeds daytime cooling and leads to overall warming in daily mean temperatures. After comparing several climate models, we find that the models agree in daytime land surface (Ts) warming, but different turbulent transfer characteristics produce discrepancies in T2m. Our work highlights the need to investigate the diurnal cycles of temperature responses carefully in land-cover change studies. Furthermore, consistent consideration of temperature variables should be applied in future comparisons involving observations and climate models.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0002.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liang Chen, liangch@illinois.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.44 MB)
Save