• Albergel, C., E. Dutra, S. Munier, J. C. Calvet, J. Munoz-Sabater, P. de Rosnay, and G. Balsamo, 2018: ERA-5 and ERA-Interim driven ISBA land surface model simulations: Which one performs better? Hydrol. Earth Syst. Sci., 22, 35153532, https://doi.org/10.5194/hess-22-3515-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boening, C., M. Lebsock, F. Landerer, and G. Stephens, 2012: Snowfall-driven mass change on the East Antarctic Ice Sheet. Geophys. Res. Lett., 39, L21501, https://doi.org/10.1029/2012GL053316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and G. J. Marshall, 2012: The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses. J. Climate, 25, 71387146, https://doi.org/10.1175/JCLI-D-11-00685.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., 1988: Snowfall in high southern latitudes. Rev. Geophys., 26, 149168, https://doi.org/10.1029/RG026i001p00149.

  • Bromwich, D. H., J. P. Nicolas, and A. J. Monaghan, 2011: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J. Climate, 24, 41894209, https://doi.org/10.1175/2011JCLI4074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and Coauthors, 2012: Tropospheric clouds in Antarctica. Rev. Geophys., 50, RG1004, https://doi.org/10.1029/2011RG000363.

  • Chen, J. L., C. R. Wilson, and B. D. Tapley, 2011: Interannual variability of Greenland ice losses from satellite gravimetry. J. Geophys. Res., 116, B07406, https://doi.org/10.1029/2010JB007789.

    • Search Google Scholar
    • Export Citation
  • Costanza, C. A., M. A. Lazzara, L. M. Keller, and J. J. Cassano, 2016: The surface climatology of the Ross Ice Shelf, Antarctica. Int. J. Climatol., 36, 49294941, https://doi.org/10.1002/joc.4681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutra, E., G. Balsamo, P. Viterbo, P. M. A. Miranda, A. Beljaars, C. Schär, and K. Elder, 2010: An improved snow scheme for the ECMWF land surface model: Description and offline validation. J. Hydrometeor., 11, 899916, https://doi.org/10.1175/2010JHM1249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Favier, V., and Coauthors, 2013: An updated and quality controlled surface mass balance dataset for Antarctica. Cryosphere, 7, 583597, https://doi.org/10.5194/tc-7-583-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fréville, H., E. Brun, G. Picard, N. Tatarinova, L. Arnaud, C. Lanconelli, C. Reijmer, and M. van den Broeke, 2014: Using MODIS land surface temperatures and the Crocus snow model to understand the warm bias of ERA-Interim reanalyses at the surface in Antarctica. Cryosphere, 8, 13611373, https://doi.org/10.5194/tc-8-1361-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorodetskaya, I. V., N. P. M. van Lipzig, M. R. van den Broeke, A. Mangold, W. Boot, and C. H. Reijmer, 2013: Meteorological regimes and accumulation patterns at Utsteinen, Dronning Maud Land, East Antarctica: Analysis of two contrasting years. J. Geophys. Res. Atmos., 118, 17001715, https://doi.org/10.1002/jgrd.50177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorodetskaya, I. V., M. Tsukernik, K. Claes, M. Ralph, W. Neff, and N. P. M. van Lipzig, 2014: The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett., 41, 61996206, https://doi.org/10.1002/2014GL060881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groh, A., and M. Horwath, 2016: The method of tailored sensitivity kernels for GRACE mass change estimates. Geophysical Research Abstracts, Vol. 18, Abstract 12065.

  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 7, https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production.

  • Hodges, K. I., R. W. Lee, and L. Bengtsson, 2011: A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Climate, 24, 48884906, https://doi.org/10.1175/2011JCLI4097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and D. H. Lister, 2015: Antarctic near-surface air temperatures compared with ERA-Interim values since 1979. Int. J. Climatol., 35, 13541366, https://doi.org/10.1002/joc.4061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazzara, M. A., G. A. Weidner, L. M. Keller, J. E. Thom, and J. J. Cassano, 2012: Antarctic Automatic Weather Station Program: 30 years of polar observation. Bull. Amer. Meteor. Soc., 93, 15191537, https://doi.org/10.1175/BAMS-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenaerts, J. T. M., M. R. van den Broeke, W. J. van de Berg, E. van Meijgaard, and P. Kuipers Munneke, 2012: A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett., 39, L04501, https://doi.org/10.1029/2011GL050713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenaerts, J. T. M., and Coauthors, 2017: Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf. Nat. Climate Change, 7, 5863, https://doi.org/10.1038/nclimate3180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medley, B., and Coauthors, 2013: Airborne-radar and ice-core observations of annual snow accumulation over Thwaites Glacier, West Antarctica confirm the spatiotemporal variability of global and regional atmospheric models. Geophys. Res. Lett., 40, 36493654, https://doi.org/10.1002/grl.50706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medley, B., and Coauthors, 2014: Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation. Cryosphere, 8, 13751392, https://doi.org/10.5194/tc-8-1375-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. J., Z. Zhang, S. E. Platnick, A. S. Ackerman, F. Werner, C. Cornet, and K. Knobelspiesse, 2018: Comparisons of bispectral and polarimetric cloud microphysical retrievals using a LES–satellite retrieval simulator. Atmos. Meas. Tech., 11, 36893715, https://doi.org/10.5194/amt-11-3689-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicolas, J. P., and D. H. Bromwich, 2011: Climate of West Antarctica and influence of marine air intrusions. J. Climate, 24, 4967, https://doi.org/10.1175/2010JCLI3522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicolas, J. P., and D. H. Bromwich, 2014: New reconstruction of Antarctic near-surface temperatures: Multidecadal trends and reliability of global reanalyses. J. Climate, 27, 80708093, https://doi.org/10.1175/JCLI-D-13-00733.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nwogu, E., I. Iwueze, and V. Nlebedim, 2016: Some tests for seasonality in time series data. J. Mod. Appl. Stat. Methods, 15, 382399, https://doi.org/10.22237/jmasm/1478002920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., I. Velicogna, M. R. van den Broeke, A. Monaghan, and J. T. M. Lenaerts, 2011: Acceleration of the contribution of the Greenland and Antarctic Ice Sheets to sea level rise. Geophys. Res. Lett., 38, L05503, https://doi.org/10.1029/2011GL046583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanz Rodrigo, J., 2011: On Antarctic wind engineering. Ph.D. thesis, Université Libre de Bruxelles, 218 pp.

  • Sanz Rodrigo, J., J. Buchlin, J. van Beeck, J. Lenaerts, and M. van den Broeke, 2013: Evaluation of the Antarctic surface wind climate from ERA reanalyses and RACMO2/ANT simulations based on automatic weather stations. Climate Dyn., 40, 353376, https://doi.org/10.1007/s00382-012-1396-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and Coauthors, 2012: A reconciled estimate of ice-sheet mass balance. Science, 338, 11831189, https://doi.org/10.1126/science.1228102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, 2004: GRACE measurements of mass variability in the Earth system. Science, 305, 503505, https://doi.org/10.1126/science.1099192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors, 2004: The SCAR READER project: Toward a high-quality database of mean Antarctic meteorological observations. J. Climate, 17, 28902898, https://doi.org/10.1175/1520-0442(2004)017<2890:TSRPTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., and N. P. M. van Lipzig, 2003: Factors controlling the near-surface wind field in Antarctica. Mon. Wea. Rev., 131, 733743, https://doi.org/10.1175/1520-0493(2003)131<0733:FCTNSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., C. H. Reijmer, and R. S. van de Wal, 2004: A study of the surface mass balance in Dronning Maud Land, Antarctica, using automatic weather stations. J. Glaciol., 50, 565582, https://doi.org/10.3189/172756504781829756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Lipzig, N., E. van Meijgaard, and J. Oerlemans, 1999: Evaluation of a regional atmospheric model using measurements of surface heat exchange processes from a site in Antarctica. Mon. Wea. Rev., 127, 19942011, https://doi.org/10.1175/1520-0493(1999)127<1994:EOARAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., P. Xie, S.-H. Yoo, Y. Xue, A. Kumar, and X. Wu, 2011: An assessment of the surface climate in the NCEP Climate Forecast System Reanalysis. Climate Dyn., 37, 16011620, https://doi.org/10.1007/s00382-010-0935-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., D. Zhou, A. Bunde, and S. Havlin, 2016: Testing reanalysis data sets in Antarctica: Trends, persistence properties, and trend significance. J. Geophys. Res. Atmos., 121, 12 83912 855, https://doi.org/10.1002/2016JD024864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wille, J. D., and Coauthors, 2016: Evaluation of the AMPS boundary layer simulations on the Ross Ice Shelf with tower observations. J. Appl. Meteor. Climatol., 55, 23492367, https://doi.org/10.1175/JAMC-D-16-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wille, J. D., and Coauthors, 2017: Evaluation of the AMPS boundary layer simulations on the Ross Ice Shelf, Antarctica, with unmanned aircraft observations. J. Appl. Meteor. Climatol., 56, 22392258, https://doi.org/10.1175/JAMC-D-16-0339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwally, H. J., M. B. Giovinetto, M. A. Beckley, and J. L. Saba, 2012: Antarctic and Greenland Drainage Systems. NASA, accessed 10 May 2019, https://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 258 258 89
PDF Downloads 263 263 96

An Evaluation of Surface Climatology in State-of-the-Art Reanalyses over the Antarctic Ice Sheet

View More View Less
  • 1 Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
  • 2 Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado
  • 3 Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
© Get Permissions
Restricted access

Abstract

In this study, we evaluate output of near-surface atmospheric variables over the Antarctic Ice Sheet from four reanalyses: the new European Centre for Medium-Range Weather Forecasts ERA-5 and its predecessor ERA-Interim, the Climate Forecast System Reanalysis (CFSR), and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The near-surface temperature, wind speed, and relative humidity are compared with datasets of in situ observations, together with an assessment of the simulated surface mass balance (approximated by precipitation minus evaporation). No reanalysis clearly stands out as the best performing for all areas, seasons, and variables, and each of the reanalyses displays different biases. CFSR strongly overestimates the relative humidity during all seasons whereas ERA-5 and MERRA-2 (and, to a lesser extent, ERA-Interim) strongly underestimate relative humidity during winter. ERA-5 captures the seasonal cycle of near-surface temperature best and shows the smallest bias relative to the observations. The other reanalyses show a general temperature underestimation during the winter months in the Antarctic interior and overestimation in the coastal areas. All reanalyses underestimate the mean near-surface winds in the interior (except MERRA-2) and along the coast during the entire year. The winds at the Antarctic Peninsula are overestimated by all reanalyses except MERRA-2. All models are able to capture snowfall patterns related to atmospheric rivers, with varying accuracy. Accumulation is best represented by ERA-5, although it underestimates observed surface mass balance and there is some variability in the accumulation over the different elevation classes, for all reanalyses.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexandra Gossart, alexandra.gossart@kuleuven.be

Abstract

In this study, we evaluate output of near-surface atmospheric variables over the Antarctic Ice Sheet from four reanalyses: the new European Centre for Medium-Range Weather Forecasts ERA-5 and its predecessor ERA-Interim, the Climate Forecast System Reanalysis (CFSR), and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The near-surface temperature, wind speed, and relative humidity are compared with datasets of in situ observations, together with an assessment of the simulated surface mass balance (approximated by precipitation minus evaporation). No reanalysis clearly stands out as the best performing for all areas, seasons, and variables, and each of the reanalyses displays different biases. CFSR strongly overestimates the relative humidity during all seasons whereas ERA-5 and MERRA-2 (and, to a lesser extent, ERA-Interim) strongly underestimate relative humidity during winter. ERA-5 captures the seasonal cycle of near-surface temperature best and shows the smallest bias relative to the observations. The other reanalyses show a general temperature underestimation during the winter months in the Antarctic interior and overestimation in the coastal areas. All reanalyses underestimate the mean near-surface winds in the interior (except MERRA-2) and along the coast during the entire year. The winds at the Antarctic Peninsula are overestimated by all reanalyses except MERRA-2. All models are able to capture snowfall patterns related to atmospheric rivers, with varying accuracy. Accumulation is best represented by ERA-5, although it underestimates observed surface mass balance and there is some variability in the accumulation over the different elevation classes, for all reanalyses.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexandra Gossart, alexandra.gossart@kuleuven.be
Save