• Campello, R. J. G. B., D. Moulavi, and J. Sander, 2013: Density-based clustering based on hierarchical density estimates. Advances in Knowledge Discovery and Data Mining, J. Pei et al., Eds., Lecture Notes in Computer Science, Vol. 7819, Springer, 160–172, https://doi.org/10.1007/978-3-642-37456-2_14.

    • Crossref
    • Export Citation
  • Campello, R. J. G. B., D. Moulavi, A. Zimek, and J. Sander, 2015: Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM Trans. Knowl. Discov. Data, 10, 151, https://doi.org/10.1145/2733381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, L., and S. Pan, 2014: Changes in precipitation extremes over the “Three-River Headwaters” region, hinterland of the Tibetan Plateau, during 1960–2012. Quat. Int., 321, 105115, https://doi.org/10.1016/j.quaint.2013.12.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., X. D. Xu, S. Yang, and W. Zhang, 2012: On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau. Theor. Appl. Climatol., 110, 423435, https://doi.org/10.1007/s00704-012-0641-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and P. M. Zhai, 2013: Persistent extreme precipitation events in China during 1951–2010. Climate Res., 57, 143155, https://doi.org/10.3354/cr01171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, H., T. Wu, and W. Dong, 2008: Thermal contrast between the middle-latitude Asian continent and adjacent ocean and its connection to the East Asian summer precipitation. J. Climate, 21, 49925007, https://doi.org/10.1175/2008JCLI2047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominguez, F., P. Kumar, X. Liang, and M. Ting, 2006: Impact of atmospheric moisture storage on precipitation recycling. J. Climate, 19, 15131530, https://doi.org/10.1175/JCLI3691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominguez, F., G. Miguez-Macho, and H. Hu, 2016: WRF with water vapor tracers: A study of moisture sources for the North American monsoon. J. Hydrometeor., 17, 19151927, https://doi.org/10.1175/JHM-D-15-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draxler, R., and G. Hess, 1997: Description of the HYSPLIT_4 modeling system. NOAA Tech. Memo. ERL ARL-224, 24 pp.

  • Draxler, R., and G. Hess, 1998: An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295308.

    • Search Google Scholar
    • Export Citation
  • Draxler, R., B. Stunder, G. Rolph, A. Stein, and A. Taylor, 2018: HYSPLIT4 user’s guide. NOAA Tech. Memo. ERL ARL-230, 254 pp.

  • Ester, M., H.-P. Kriegel, J. Sander, and X. Xu, 1996: A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. Second Int. Conf. on Knowledge Discovery and Data Mining, Portland, OR, AAAI, 226231.

    • Search Google Scholar
    • Export Citation
  • Feng, L., and T. J. Zhou, 2012: Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis. J. Geophys. Res., 117, D20114, https://doi.org/10.1029/2011JD017012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gariel, M., A. N. Srivastava, and E. Feron, 2011: Trajectory clustering and an application to airspace monitoring. IEEE Trans. Intell. Transp. Syst., 12, 15111524, https://doi.org/10.1109/TITS.2011.2160628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Q., D. Jiang, and X. Lang, 2018: Sources of moisture for different intensities of summer rainfall over the Chinese Loess Plateau during 1979–2009. Int. J. Climatol., 38, e1280e1287, https://doi.org/10.1002/joc.5416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, L., L. Zhong, and Z. Ke, 2017: Characteristics of the precipitation recycling ratio and its relationship with regional precipitation in China. Theor. Appl. Climatol., 127, 513531, https://doi.org/10.1007/s00704-015-1645-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W., T. Qiu, Z. Yang, D. Lin, J. S. Wright, B. Wang, and X. He, 2018a: On the formation mechanism for wintertime extreme precipitation events over the southeastern Tibetan Plateau. J. Geophys. Res. Atmos., 123, 12 69212 714, https://doi.org/10.1029/2018JD028921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W., X. S. He, Z. F. Yang, T. P. Qiu, J. S. Wright, B. Wang, and D. Y. Lin, 2018b: Moisture sources for wintertime extreme precipitation events over South China during 1979–2013. J. Geophys. Res. Atmos., 123, 66906712, https://doi.org/10.1029/2018JD028485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., and X. Cui, 2015: Moisture sources of an extreme precipitation event in Sichuan, China, based on the Lagrangian method. Atmos. Sci. Lett., 16, 177183, https://doi.org/10.1002/asl2.562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., and H. S. Mahmassani, 2015: Spatial and temporal characterization of travel patterns in a traffic network using vehicle trajectories. Transp. Res. Procedia, 9, 164184, https://doi.org/10.1016/j.trpro.2015.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., K.-M. Kim, and S. Yang, 2000: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate, 13, 24612482, https://doi.org/10.1175/1520-0442(2000)013<2461:DABFCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and A. J. Dolman, 2016: A synoptic overview and moisture trajectory analysis of the “7.21” heavy rainfall event in Beijing. J. Meteor. Res., 30, 103116, https://doi.org/10.1007/s13351-016-5052-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., A. J. Dolman, and Z. Xu, 2016: Atmospheric moisture sources, paths, and the quantitative importance to the Eastern Asian monsoon region. J. Hydrometeor., 17, 637649, https://doi.org/10.1175/JHM-D-15-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S. C., D. L. Li, P. Zhao, and G. Q. Zhang, 2009: The climatic characteristics of vapor transportation in rainy season of the origin area of three rivers in Qinhai-Xizang Plateau (in Chinese). Acta Meteor. Sin., 67, 591598.

    • Search Google Scholar
    • Export Citation
  • Martinez, J. A., and F. Dominguez, 2014: Sources of atmospheric moisture for the La Plata River basin. J. Climate, 27, 67376753, https://doi.org/10.1175/JCLI-D-14-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, G. R., 2016: Climate variability and change in the Sanjiangyuan region. Landscape and Ecosystem Diversity, Dynamics and Management in the Yellow River Source Zone. G. J. Brierley et al., Eds., Springer, 35–57.

    • Crossref
    • Export Citation
  • McInnes, L., J. Healy, and S. Astels, 2017: hdbscan: Hierarchical density based clustering. J. Open Source Softw., 2, 205, https://doi.org/10.21105/joss.00205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Numaguti, A., 1999: Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res., 104, 19571972, https://doi.org/10.1029/1998JD200026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, C., B. Zhu, J. Gao, H. Kang, and T. Zhu, 2019: Quantitative identification of moisture sources over the Tibetan Plateau and the relationship between thermal forcing and moisture transport. Climate Dyn., 52, 181196, https://doi.org/10.1007/s00382-018-4130-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, C., B. Chen, T. L. Zhao, B. R. Zhou, and Y. X. Han, 2016: Application of Lagrange water vapor source diagnosis method to the three river source area (in Chinese). J. Appl. Meteor. Sci., 27, 688697.

    • Search Google Scholar
    • Export Citation
  • Ren, Z. H., F. L. Zou, Y. Yu, G. A. Wang, Z. F. Zhang, S. H. Fan, Z. Q. Zhang, and C. Sun, 2012: Dataset of daily climate data from Chinese surface stations, version 3.0. National Meteorological Information Center, accessed 5 January 2018, https://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html.

  • Simmonds, I., D. Bi, and P. Hope, 1999: Atmospheric water vapor flux and its association with rainfall over China in summer. J. Climate, 12, 13531367, https://doi.org/10.1175/1520-0442(1999)012<1353:AWVFAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sodemann, H., and A. Stohl, 2013: Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon. Wea. Rev., 141, 28502868, https://doi.org/10.1175/MWR-D-12-00256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sodemann, H., C. Schwierz, and H. Wernli, 2008: Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation. J. Geophys. Res., 113, D03107, https://doi.org/10.1029/2007JD008503.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., H. Wernli, and C. Schwierz, 2009: Sources of water vapour contributing to the Elbe flood in August 2002—A tagging study in a mesoscale model. Quart. J. Roy. Meteor. Soc., 135, 205223, https://doi.org/10.1002/qj.374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. James, 2004: A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J. Hydrometeor., 5, 656678, https://doi.org/10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. James, 2005: A Lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Moisture transports between Earth’s ocean basins and river catchments. J. Hydrometeor., 6, 961984, https://doi.org/10.1175/JHM470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2014: Moisture sources of semiarid grassland in China using the Lagrangian particle model FLEXPART. J. Climate, 27, 24572474, https://doi.org/10.1175/JCLI-D-13-00517.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2015: Analysis of the major atmospheric moisture sources affecting three sub-regions of east China. Int. J. Climatol., 35, 22432257, https://doi.org/10.1002/joc.4145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2018: Interannual variation of the spring and summer precipitation over the Three River Source Region in China and the associated regimes. J. Climate, 31, 74417457, https://doi.org/10.1175/JCLI-D-17-0680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2019: Enhanced connections between summer precipitation over the Three-River-Source region of China and the global climate system. Climate Dyn., 52, 34713488, https://doi.org/10.1007/s00382-018-4326-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, X., T. Gan, and Y. D. Chen, 2018: Moisture sources and pathways associated with the spatial variability of seasonal extreme precipitation over Canada. Climate Dyn., 50, 629640, https://doi.org/10.1007/s00382-017-3630-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Y., H. Pang, W. Zhang, Y. Li, S. Wu, and S. Hou, 2015: Effects of changes in moisture source and the upstream rainout on stable isotopes in precipitation—A case study in Nanjing, eastern China. Hydrol. Earth Syst. Sci., 19, 42934306, https://doi.org/10.5194/hess-19-4293-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, S., and Y. Ding, 1981: Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 2330, https://doi.org/10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, L., X. Xu, Y. Fu, and S. Li, 2014: Wetland changes and their responses to climate change in the “three-river headwaters” region of China since the 1990s. Energies, 7, 25152534, https://doi.org/10.3390/en7042515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1998: Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Climatic Change, 39, 667694, https://doi.org/10.1023/A:1005319109110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Atmospheric moisture recycling: Role of advection and local evaporation. J. Climate, 12, 13681381, https://doi.org/10.1175/1520-0442(1999)012<1368:AMRROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., H. H. Savenije, B. Schaefli, and S. C. Steele-Dunne, 2010: Origin and fate of atmospheric moisture over continents. Water Resour. Res., 46, W09525, https://doi.org/10.1029/2010WR009127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., O. A. Tuinenburg, H. R. Knoche, H. Kunstmann, and H. H. G. Savenije, 2013: Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking? Hydrol. Earth Syst. Sci., 17, 48694884, https://doi.org/10.5194/hess-17-4869-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., G. Cheng, Y. Ding, Y. Shen, and H. Jiang, 2006: Characteristics of water vapor transport and atmospheric circulation for precipitation over the source regions of the Yellow and Yangtze Rivers (in Chinese). J. Glaciol. Geocryol., 1, 814.

    • Search Google Scholar
    • Export Citation
  • Wang, N., X. M. Zeng, W. D. Guo, C. H. Chen, W. You, Y. Q. Zheng, and J. Zhu, 2018: Quantitative diagnosis of moisture sources and transport pathways for summer precipitation over the mid-lower Yangtze River basin. J. Hydrol., 559, 252265, https://doi.org/10.1016/j.jhydrol.2018.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, A. T., M. D. Rintoul, and C. G. Valicka, 2016: Exploratory trajectory clustering with distance geometry. 10th Int. Conf. on Augmented Cognition, Toronto, ON, Canada, HCI International, 263–274.

  • Winschall, A., S. Pfahl, H. Sodemann, and H. Wernli, 2014: Comparison of Eulerian and Lagrangian moisture source diagnostics—The flood event in eastern Europe in May 2010. Atmos. Chem. Phys., 14, 66056619, https://doi.org/10.5194/acp-14-6605-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., 2002: A mid-latitude Asian circulation anomaly pattern in boreal summer and its connection with Indian and East Asian summer monsoons. Int. J. Climatol., 22, 18791895, https://doi.org/10.1002/joc.845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., T. Zhao, C. Lu, Y. Guo, B. Chen, R. Liu, Y. Li, and X. Shi, 2014: An important mechanism sustaining the atmospheric “water tower” over the Tibetan Plateau. Atmos. Chem. Phys., 14, 11 28711 295, https://doi.org/10.5194/acp-14-11287-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Z., 1980: A case study of a shear line producing heavy rainfall on Qinghai–Xizang Plateau (in Chinese). Acta Meteor. Sin., 38, 142149.

    • Search Google Scholar
    • Export Citation
  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, https://doi.org/10.1175/BAMS-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Q. Tang, and D. Chen, 2017: Recent changes in the moisture source of precipitation over the Tibetan Plateau. J. Climate, 30, 18071819, https://doi.org/10.1175/JCLI-D-15-0842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., X. Yao, J. Ma, and Z. Mima, 2016: Climatology of transverse shear lines related to heavy rainfall over the Tibetan Plateau during boreal summer. J. Meteor. Res., 30, 915926, https://doi.org/10.1007/s13351-016-6952-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 186 186 36
PDF Downloads 146 146 39

Major Moisture Pathways and Their Importance to Rainy Season Precipitation over the Sanjiangyuan Region of the Tibetan Plateau

View More View Less
  • 1 State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China
  • 2 Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
  • 3 Joint-Sponsored State Key Laboratory of Plateau Ecology and Agriculture, School of Water Resources and Electric Power, Qinghai University, Xining, and State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China
© Get Permissions
Restricted access

Abstract

Knowledge of the quantitative importance of moisture transport pathways of the Sanjiangyuan region (known as the “water tower” of China) can provide insights into the regional atmospheric branch of the hydrological cycle over the Sanjiangyuan region. A combined method with a clustering algorithm [Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN)] and a Lagrangian moisture source diagnostic is developed to identify the major moisture transport pathways and quantify their importance to three types of consecutive precipitation events—extreme precipitation (EP) events, moderate precipitation (MP) events, and extreme aridity (EA) events—for the Sanjiangyuan region during the rainy season (June–September 1960–2017). The results indicate that moisture paths from the northwest covering northwest China and central Asia (the N.W. pathway) and moisture paths from southern and southeastern China (the S.S. pathway) are stable moisture transport pathways during EP and MP events [importance (precipitation contribution in percentage): N.W. pathway, 18.4% (EP), 32.2% (MP); S.S. pathway, 25.9% (EP), 28.5% (MP)]. Affected by the western edge of a significant anticyclone anomaly centered around 35°N, 115°E, the moisture paths via the Bay of Bengal (the B.B. pathway) can reach the target region and become a supplementary moisture contributor (14.9%) to EP events. Moisture paths via the Arabian Sea and Indian peninsula (the A.I. pathway) are also active but the contributions are limited [4.9% (EP) and 5.6% (MP)]. For EA events, the fast-moving trajectories from farther western Asia (the F.W. pathway) play a dominant role and all major moisture pathways (F.W., N.W., and S.S. pathways) carry limited moisture to the target region.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0196.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Deyu Zhong, zhongdy@tsinghua.edu.cn

Abstract

Knowledge of the quantitative importance of moisture transport pathways of the Sanjiangyuan region (known as the “water tower” of China) can provide insights into the regional atmospheric branch of the hydrological cycle over the Sanjiangyuan region. A combined method with a clustering algorithm [Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN)] and a Lagrangian moisture source diagnostic is developed to identify the major moisture transport pathways and quantify their importance to three types of consecutive precipitation events—extreme precipitation (EP) events, moderate precipitation (MP) events, and extreme aridity (EA) events—for the Sanjiangyuan region during the rainy season (June–September 1960–2017). The results indicate that moisture paths from the northwest covering northwest China and central Asia (the N.W. pathway) and moisture paths from southern and southeastern China (the S.S. pathway) are stable moisture transport pathways during EP and MP events [importance (precipitation contribution in percentage): N.W. pathway, 18.4% (EP), 32.2% (MP); S.S. pathway, 25.9% (EP), 28.5% (MP)]. Affected by the western edge of a significant anticyclone anomaly centered around 35°N, 115°E, the moisture paths via the Bay of Bengal (the B.B. pathway) can reach the target region and become a supplementary moisture contributor (14.9%) to EP events. Moisture paths via the Arabian Sea and Indian peninsula (the A.I. pathway) are also active but the contributions are limited [4.9% (EP) and 5.6% (MP)]. For EA events, the fast-moving trajectories from farther western Asia (the F.W. pathway) play a dominant role and all major moisture pathways (F.W., N.W., and S.S. pathways) carry limited moisture to the target region.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0196.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Deyu Zhong, zhongdy@tsinghua.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 7.57 MB)
Save