• Benestad, R. E., I. Hanssen-Bauer, and D. Chen, 2008: Empirical–Statistical Downscaling. World Scientific, 300 pp.

  • Byrne, M. P., and P. A. O’Gorman, 2015: The response of precipitation minus evapotranspiration to climate warming: Why the “wet-get-wetter, dry-get-drier” scaling does not hold over land. J. Climate, 28, 80788092, https://doi.org/10.1175/JCLI-D-15-0369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and Y. Chen, 2003: Association between winter temperature in China and upper air circulation over East Asia revealed by canonical correlation analysis. Global Planet. Change, 37, 315325, https://doi.org/10.1016/S0921-8181(02)00206-0.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 226 pp., https://doi.org/10.5065/D63N21CH.

    • Crossref
    • Export Citation
  • Cook, K. H., G. A. Meehl, and J. M. Arblaster, 2012: Monsoon regimes and processes in CCSM4. Part II: African and American monsoon systems. J. Climate, 25, 26092621, https://doi.org/10.1175/JCLI-D-11-00185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuo, L., and Y. Zhang, 2017: Spatial patterns of wet season precipitation vertical gradients on the Tibetan Plateau and the surroundings. Sci. Rep., 7, 5057, https://doi.org/10.1038/s41598-017-05345-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, https://doi.org/10.1175/JCLI3884.1.

  • Dai, A., and C. E. Bloecker, 2019: Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Climate Dyn., 52, 289306, https://doi.org/10.1007/s00382-018-4132-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., R. M. Rasmussen, C. Liu, and K. Ikeda, 2019: A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Climate Dyn., https://doi.org/10.1007/S00382-017-3787-6, in press.

    • Search Google Scholar
    • Export Citation
  • Dai, Y.-F., Y.-M. Liu, and J.-M. Jin, 2014: Statistical downscaling of FGOALS-s2 projected precipitation in Eastern China. Atmos. Ocean. Sci. Lett., 7, 388394, https://doi.org/10.3878/j.issn.1674-2834.14.0025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866, http://www.climatechange2013.org/images/report/WG1AR5_Chapter09_FINAL.pdf.

  • Gao, Y., J. A. Vano, C. Zhu, and D. P. Lettenmaier, 2011: Evaluating climate change over the Colorado River basin using regional climate models. J. Geophys. Res., 116, D13104, https://doi.org/10.1029/2010JD015278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., L. R. Leung, E. P. Salathé, F. Dominguez, B. Nijssen, and D. P. Lettenmaier, 2012: Moisture flux convergence in regional and global climate models: Implications for droughts in the southwestern United States under climate change. Geophys. Res. Lett., 39, L09711, https://doi.org/10.1029/2012GL051560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., L. Cuo, and Y. Zhang, 2014: Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible mechanisms. J. Climate, 27, 18761893, https://doi.org/10.1175/JCLI-D-13-00321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., L. R. Leung, Y. Zhang, and L. Cuo, 2015a: Changes in moisture flux over the Tibetan Plateau during 1979–2011: Insights from a high-resolution simulation. J. Climate, 28, 41854197, https://doi.org/10.1175/JCLI-D-14-00581.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., X. Li, L. R. Leung, D. Chen, and J. Xu, 2015b: Aridity changes in the Tibetan Plateau in a warming climate. Environ. Res. Lett., 10, 034013, https://doi.org/10.1088/1748-9326/10/3/034013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., J. Xu, and D. Chen, 2015c: Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979–2011. J. Climate, 28, 28232841, https://doi.org/10.1175/JCLI-D-14-00300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., L. Xiao, D. Chen, F. Chen, J. Xu, and Y. Xu, 2017: Quantification of the relative role of land-surface processes and large-scale forcing in dynamic downscaling over the Tibetan Plateau. Climate Dyn., 48, 17051721, https://doi.org/10.1007/s00382-016-3168-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., L. Xiao, D. Chen, J. Xu, and H. Zhang, 2018a: Comparison between past and future extreme precipitations simulated by global and regional climate models over the Tibetan Plateau. Int. J. Climatol., 38, 12851297, https://doi.org/10.1002/joc.5243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., F. Chen, D. P. Lettenmaier, J. Xu, L. Xiao, and X. Li, 2018b: Does elevation-dependent warming hold true above 5000 m elevation? Lessons from the Tibetan Plateau. npj Climate Atmos. Sci., 1, 19, https://doi.org/10.1038/S41612-018-0030-Z.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175183, http://wcrp.ipsl.jussieu.fr/RCD_Projects/CORDEX/CORDEX_giorgi_WMO.pdf.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, https://doi.org/10.1029/2002GL015311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, G., and R. F. Adler, 2013: Interdecadal variability/long-term changes in global precipitation patterns during the past three decades: Global warming and/or Pacific decadal variability? Climate Dyn., 40, 30093022, https://doi.org/10.1007/s00382-012-1443-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, D., and H. Wang, 2016: Comparison of a very-fine-resolution GCM with RCM dynamical downscaling in simulating climate in China. Adv. Atmos. Sci., 33, 559570, https://doi.org/10.1007/s00376-015-5147-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, D., H. Wang, and D. Li, 2012: A projection of permafrost degradation on the Tibetan Plateau during the 21st century. J. Geophys. Res., 117, D05106, https://doi.org/10.1029/2011JC007292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., and J. O. Roads, 2004: U.S. climate sensitivity simulated with the NCEP regional spectral model. Climatic Change, 62, 115154, https://doi.org/10.1023/B:CLIM.0000013675.66917.15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heikkilä, U., A. D. Sandvik, and A. Sorterberg, 2011: Dynamical downscaling or ERA-40 in complex terrain using WRF regional climate model. Climate Dyn., 37, 15511564, https://doi.org/10.1007/s00382-010-0928-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrologic cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., L. P. H. Van Beek, and M. F. P. Bierkens, 2010: Climate change will affect the Asian water towers. Science, 328, 13821385, https://doi.org/10.1126/science.1183188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., F. Pellicciotti, and M. F. P. Bierkens, 2013: Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat. Geosci., 6, 742745, https://doi.org/10.1038/ngeo1896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, Z., and S. Kang, 2013: Double-nested dynamical downscaling experiments over the Tibetan Plateau and their projection of climate change under two RCP scenarios. J. Atmos. Sci., 70, 12781290, https://doi.org/10.1175/JAS-D-12-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kääb, A., E. Berthier, C. Nuth, J. Gardelle, and Y. Arnaud, 2012: Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488, 495498, https://doi.org/10.1038/nature11324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., J.-T. Chang, N. L. Baker, D. S. Wilks, and W. L. Gates, 1984: The statistical problem of climate inversion: Determination of the relationship between local and large-scale climate. Mon. Wea. Rev., 112, 20692077, https://doi.org/10.1175/1520-0493(1984)112<2069:TSPOCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., Y. H. Kuo, and J. Tribbia, 2006: Research needs and directions of regional climate modeling using WRF and CCSM. Bull. Amer. Meteor. Soc., 87, 17471751, https://doi.org/10.1175/BAMS-87-12-1747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R., Y. Gao, D. Chen, Y. Zhang, and S. Li, 2018: Contrasting vegetation changes in dry and humid regions of the Tibetan Plateau over recent decades. Sci. Cold Arid. Reg., 10, 482492.

    • Search Google Scholar
    • Export Citation
  • Li, X., Y. Gao, Y. Pan, and Y. Xu, 2018a: Evaluation of near-surface wind speed simulations over the Tibetan Plateau from three dynamical downscalings based on WRF model. Theor. Appl. Climatol., 134, 13991411, https://doi.org/10.1007/s00704-017-2353-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., J. Pan, J. Zhu, K. E. Kunkel, and J. X. L. Wang, 2006: Regional climate model downscaling of the U.S. summer climate and future change. J. Geophys. Res., 111, D10108, https://doi.org/10.1029/2005JD006685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and B. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 17291742, https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, J. C. F., Z. Yang, and R. A. Pielke, 2008: Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model. J. Geophys. Res., 113, D09112, https://doi.org/10.1029/2007JD009216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., W. Gutowski, R. Jones, R. Leung, S. McGinnis, A. Nunes, and Y. Qian, 2009: A regional climate change assessment program for North America. Eos, Trans. Amer. Geophys. Union, 90, 311311, https://doi.org/10.1029/2009EO360002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, https://doi.org/10.1038/nature08823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G., Z. Yang, K. E. Mitchell, F. Chen, M. B. Ek, M. Tewari, and Y. Xia, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangwala, I., E. Sinsky, and J. R. Miller, 2013: Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models. Environ. Res. Lett., 8, 024040, https://doi.org/10.1088/1748-9326/8/2/024040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 11811184, https://doi.org/10.1126/science.1139601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2014: Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming. J. Climate, 27, 79217948, https://doi.org/10.1175/JCLI-D-14-00153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2006: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note, TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Su, F., X. Duan, D. Chen, Z. Hao, and L. Cuo, 2013: Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J. Climate, 26, 31873208, https://doi.org/10.1175/JCLI-D-12-00321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, A., and X. Zeng, 2012: Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res., 117, 214221, https://doi.org/10.1029/2011JD016553.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233235, https://doi.org/10.1126/science.1140746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetterhall, F., A. Bádossy, D. Chen, S. Halldin, and C. Y. Xu, 2006: Daily precipitation-downscaling techniques in three Chinese regions. Water Resour. Res., 42, W11423, https://doi.org/10.1029/2005WR004573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., Y. Gao, D. Chen, L. Xiao, and T. Ou, 2017: Evaluation of global climate models for downscaling applications centered over the Tibetan Plateau. Int. J. Climatol., 37, 657671, https://doi.org/10.1002/joc.4731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., and C. Xu, 2012: Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models. Atmos. Oceanic Sci. Lett., 5, 489494, https://doi.org/10.1080/16742834.2012.11447041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., Z. Janjic, J. Dudhia, R. Vasic, and F. De Sales, 2014: A review on regional dynamical downscaling in intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability. Atmos. Res., 147–148, 6885, https://doi.org/10.1016/j.atmosres.2014.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., H. Wu, J. Qin, C. Lin, W. Tang, and Y. Chen, 2014: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet. Change, 112, 7991, https://doi.org/10.1016/j.gloplacha.2013.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T., J. Pu, A. Lu, Y. Wang, and W. Yu, 2007: Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arct. Antarct. Alp. Res., 39, 642650, https://doi.org/10.1657/1523-0430(07-510)[YAO]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2012: Third Pole Environment (TPE). Environ. Dev., 3, 5264, https://doi.org/10.1016/j.envdev.2012.04.002.

  • Yin, H., M. G. Donat, L. V. Alexander, and Y. Sun, 2015: Multi-dataset comparison of gridded observed temperature and precipitation extremes over China. Int. J. Climatol., 35, 28092827, https://doi.org/10.1002/joc.4174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Q., and Coauthors, 2011: Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Climate Dyn., 36, 23992417, https://doi.org/10.1007/s00382-009-0735-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., T. Zhou, and L. Zhang, 2017: Wetting and greening Tibetan Plateau in early summer in recent decades. J. Geophys. Res., 122, 58085822, https://doi.org/10.1002/2017JD026468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., 2007: Vegetation Map of the People's Republic of China (1:1000000). Geological Publishing House, 1270 pp.

  • Zobel, Z., J. Wang, D. J. Wuebbles, and V. R. Kotamarthi, 2018: Evaluations of high-resolution dynamically downscaled ensembles over the contiguous United States. Climate Dyn., 50, 863884, https://doi.org/10.1007/s00382-017-3645-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 66 66 10
PDF Downloads 35 35 8

Decomposition of Future Moisture Flux Changes over the Tibetan Plateau Projected by Global and Regional Climate Models

View More View Less
  • 1 Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, and University of Chinese Academy of Sciences, Beijing, China
  • 2 Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China
  • 3 Department of Geographical Science, Hunan University of Arts and Science, Changde, China
  • 4 Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, and University of Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

To meet the requirement of high-resolution datasets for many applications, a dynamical downscaling approach using a regional climate model (the WRF Model) driven by a global climate model (CCSM4) has been adopted. This study focuses on projections of future moisture flux changes over the Tibetan Plateau (TP). First, the downscaling results for the historical period (1980–2005) are evaluated for precipitation P, evaporation E, and precipitation minus evaporation PE against Global Land Data Assimilation System (GLDAS) data. The mechanism of PE changes is analyzed by decomposition into dynamic, thermodynamic, and transient eddy components. Whether the historical period changes and mechanisms continue into the future (2010–2100) is investigated using the WRF and CCSM model projections under the RCP4.5 and RCP8.5 scenarios. Compared with coarse-resolution forcing, downscaling was found to better reproduce the historical spatial patterns and seasonal mean of annual average P, E, and PE over the TP. WRF projects a diverse spatial variation of PE changes, with an increase in the northern TP and a decrease in the southern TP, compared with the uniform increase in CCSM. The dynamic component dominates PE changes for the historical period in both the CCSM and WRF projections. In the future, however, the thermodynamic component in CCSM dominates PE changes under RCP4.5 and RCP8.5 from the near-term (2010–39) to the long-term (2070–99) future. Unlike the CCSM projections, the WRF projections reproduce the mechanism seen in the historical period—that is, the dynamic component dominates PE changes. Furthermore, future PE changes in the dynamical downscaling are less sensitive to warming than its coarse-resolution forcing.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yanhong Gao, gaoyh@lzb.ac.cn

Abstract

To meet the requirement of high-resolution datasets for many applications, a dynamical downscaling approach using a regional climate model (the WRF Model) driven by a global climate model (CCSM4) has been adopted. This study focuses on projections of future moisture flux changes over the Tibetan Plateau (TP). First, the downscaling results for the historical period (1980–2005) are evaluated for precipitation P, evaporation E, and precipitation minus evaporation PE against Global Land Data Assimilation System (GLDAS) data. The mechanism of PE changes is analyzed by decomposition into dynamic, thermodynamic, and transient eddy components. Whether the historical period changes and mechanisms continue into the future (2010–2100) is investigated using the WRF and CCSM model projections under the RCP4.5 and RCP8.5 scenarios. Compared with coarse-resolution forcing, downscaling was found to better reproduce the historical spatial patterns and seasonal mean of annual average P, E, and PE over the TP. WRF projects a diverse spatial variation of PE changes, with an increase in the northern TP and a decrease in the southern TP, compared with the uniform increase in CCSM. The dynamic component dominates PE changes for the historical period in both the CCSM and WRF projections. In the future, however, the thermodynamic component in CCSM dominates PE changes under RCP4.5 and RCP8.5 from the near-term (2010–39) to the long-term (2070–99) future. Unlike the CCSM projections, the WRF projections reproduce the mechanism seen in the historical period—that is, the dynamic component dominates PE changes. Furthermore, future PE changes in the dynamical downscaling are less sensitive to warming than its coarse-resolution forcing.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yanhong Gao, gaoyh@lzb.ac.cn
Save