• Barriopedro, D., E. M. Fischer, J. Luterbacher, R. M. Trigo, and R. García-Herrera, 2011: The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332, 220224, https://doi.org/10.1126/science.1201224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A., J. Sheffield, and P. Milly, 2017: Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett., 44, 236244, https://doi.org/10.1002/2016GL071921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environmental Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, https://doi.org/10.5194/gmd-4-677-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M., 1961: The Heat Balance of the Earth’s Surface. U.S. Department of Commerce, 259 pp.

  • Byrne, M. P., and P. A. O’Gorman, 2016: Understanding decreases in land relative humidity with global warming: Conceptual model and GCM simulations. J. Climate, 29, 90459061, https://doi.org/10.1175/JCLI-D-16-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CERES Science Team, 2000: EBAF-Surface Ed4.0. NASA Atmospheric Science Data Center (ASDC), accessed 14 June 2018, https://doi.org/10.5067/Terra+Aqua/CERES/EBAF-Surface_L3B004.0.

    • Crossref
    • Export Citation
  • Collatz, G. J., T. Ball, C. Grivet, and J. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agric. For. Meteor., 54, 107136, https://doi.org/10.1016/0168-1923(91)90002-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeVries, D., 1958: Simultaneous transfer of heat and moisture in porous media. Trans. Amer. Geophys. Union, 39, 909916, https://doi.org/10.1029/TR039i005p00909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., and Coauthors, 2017: Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl. Acad. Sci. USA, 114, 48814886, https://doi.org/10.1073/pnas.1618082114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P., R. Koster, and Z. Guo, 2006: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7, 11771198, https://doi.org/10.1175/JHM532.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., A. J. Pitman, and S. I. Seneviratne, 2017: Regional warming of hot extremes accelerated by surface energy fluxes. Geophys. Res. Lett., 44, 70117019, https://doi.org/10.1002/2017GL073733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eagleson, P., 1978: Climate, soil, and vegetation: 4. The expected value of annual evapotranspiration. Water Resour. Res., 14, 731739, https://doi.org/10.1029/WR014i005p00731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ermold, B., D. Cook, and J. Kyrouac, 1996: Soil water and temperature system. Atmospheric Radiation Measurement (ARM) Climate Research Facility, accessed 14 June 2018, https://doi.org/10.5439/1150274.

    • Crossref
    • Export Citation
  • Fischer, E., J. Rajczak, and C. Schär, 2012: Changes in European summer temperature variability revisited. Geophys. Res. Lett., 39, L19702, https://doi.org/10.1029/2012GL052730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franssen, H. H., R. Stöckli, I. Lehner, E. Rotenberg, and S. Seneviratne, 2010: Energy balance closure of eddy-covariance data: A multisite analysis for European fluxnet stations. Agric. For. Meteor., 150, 15531567, https://doi.org/10.1016/j.agrformet.2010.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 334 pp.

  • Gentine, P., P. D’Odorico, B. R. Lintner, G. Sivandran, and G. Salvucci, 2012: Interdependence of climate, soil, and vegetation as constrained by the Budyko curve. Geophys. Res. Lett., 39, L19404, https://doi.org/10.1029/2012GL053492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsch, A., A. Pitman, and V. Haverd, 2016: Evaluating land–atmosphere coupling using a resistance pathway framework. J. Hydrometeor., 17, 26152630, https://doi.org/10.1175/JHM-D-15-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R., J. Canadell, J. Ehleringer, H. Mooney, O. Sala, and E. Schulze, 1996: A global analysis of root distributions for terrestrial biomes. Oecologia, 108, 389411, https://doi.org/10.1007/BF00333714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, R. W., and B. Brown, 1992: Extreme variability in a changing climate: Variability is more important than averages. Climatic Change, 21, 289302, https://doi.org/10.1007/BF00139728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B., and Coauthors, 2013: Near-term climate change: Projections and predictability. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 953–1028.

  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. Suarez, and S. Schubert, 2006: Distinct hydrologic signatures in observed historical temperature fields. J. Hydrometeor., 7, 10611075, https://doi.org/10.1175/JHM530.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Z. Guo, P. Dirmeyer, R. Yang, K. Mitchell, and M. Puma, 2009: On the nature of soil moisture in land surface models. J. Climate, 22, 43224336, https://doi.org/10.1175/2009JCLI2832.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., G. Salvucci, A. Rigden, M. Jung, G. Collatz, and S. Schubert, 2015: The pattern across the continental United States of evapotranspiration variability associated with water availability. Front. Earth Sci., 3, 35, https://doi.org/10.3389/FEART.2015.00035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., A. van Ulden, B. van den Hurk, and E. van Meijgaard, 2007: Summertime inter-annual temperature variability in an ensemble of regional model simulations: Analysis of the surface energy budget. Climate Dyn., 81 (Suppl. 1), 233247, https://doi.org/10.1007/S10584-006-9229-9.

    • Search Google Scholar
    • Export Citation
  • Libardi, P., K. Reichardt, C. Jose, M. Bazza, and D. Nielsen, 1982: An approximate method of estimating soil water diffusivity for different soil bulk densities. Water Resour. Res., 18, 177181, https://doi.org/10.1029/WR018i001p00177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, C., K. Gaustad, and L. Riihimaki, 2014: Radiative flux analysis. ARM Climate Research Facility, accessed 14 June 2018, https://doi.org/10.5439/1157585.

    • Crossref
    • Export Citation
  • Ma, H.-Y., and Coauthors, 2018: CAUSES: On the role of surface energy budget errors to the warm surface air temperature error over the central United States. J. Geophys. Res. Atmos., 123, 28882909, https://doi.org/10.1002/2017JD027194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuura, K., 2001: The Climate Data Guide: Global (land) precipitation and temperature: Willmott & Matsuura. University of Delaware, accessed 14 June 2018, https://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html.

  • McCoy, R., S. Xie, and Y. Zhang, 2017: Quality controlled eddy correlation flux measurement (30QCECOR). Atmospheric Radiation Measurement (ARM) Climate Research Facility, accessed 14 June 2018, https://doi.org/10.5439/1097546.

    • Crossref
    • Export Citation
  • Merrifield, A. L., and S.-P. Xie, 2016: Summer U.S. surface air temperature variability: Controlling factors and AMIP simulation biases. J. Climate, 29, 51235139, https://doi.org/10.1175/JCLI-D-15-0705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morcrette, C. J., and Coauthors, 2018: Introduction to CAUSES: Description of weather and climate models and their near-surface temperature errors in 5 day hindcasts near the Southern Great Plains. J. Geophys. Res. Atmos., 123, 26552683, https://doi.org/10.1002/2017JD027199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, B., and S. Seneviratne, 2014: Systemic land climate and evapotranspiration biases in CMIP5 simulations. Geophys. Res. Lett., 41, 128134, https://doi.org/10.1002/2013GL058055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitao, J. J., and J. Bear, 1996: Potentials and their role in transport in porous media. Water Resour. Res., 32, 225250, https://doi.org/10.1029/95WR02715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papalexiou, S. M., A. AghaKouchak, K. E. Trenberth, and E. Foufoula-Georgiou, 2018: Global, regional, and megacity trends in the highest temperature of the year: Diagnostics and evidence for accelerating trends. Earth’s Future, 6, 7179, https://doi.org/10.1002/2017EF000709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Previdi, M., 2010: Radiative feedbacks on global precipitation. Environ. Res. Lett., 5, 025211, https://doi.org/10.1088/1748-9326/5/2/025211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rawls, W., D. Brakensiek, and K. Saxtonn, 1982: Estimation of soil water properties. Trans. ASAE, 25, 13161320, https://doi.org/10.13031/2013.33720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riihimaki, L., and Y. Shi, 1994: Data quality assessment for ARM radiation data. Atmospheric Radiation Measurement (ARM) Climate Research Facility, accessed 14 June 2018, https://doi.org/10.5439/1027372.

    • Crossref
    • Export Citation
  • Robine, J.-M., S. L. K. Cheung, S. L. Roy, H. Van Oyen, C. Griffiths, J.-P. Michel, and F. R. Herrmann, 2008: Death toll exceeded 70,000 in Europe during the summer of 2003. C. R. Biol., 331, 171178, https://doi.org/10.1016/j.crvi.2007.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryu, Y., D. Baldocchi, S. Ma, and T. Hehn, 2008: Interannual variability of evapotranspiration and energy exchange over an annual grassland in California. J. Geophys. Res., 113, D09104, https://doi.org/10.1029/2007JD009263.

    • Search Google Scholar
    • Export Citation
  • Sauvageot, H., 1994: The probability density function of rain rate and the estimation of rainfall by area integrals. J. Appl. Meteor., 33, 12551262, https://doi.org/10.1175/1520-0450(1994)033<1255:TPDFOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., P. Vidale, D. Lüthi, C. Frei, C. Häberli, M. Liniger, and C. Appenzeller, 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332335, https://doi.org/10.1038/nature02300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P., Y. Mintz, Y. Sud, and A. Dalcher, 1986: A simple biosphere model (SIB) for use within general circulation models. J. Atmos. Sci., 43, 505531, https://doi.org/10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shultz, J.-P., L. Dümenil, and J. Polcher, 2000: On the land surface–atmosphere coupling and its impact in a single-column atmospheric model. J. Appl. Meteor., 40, 642663, https://doi.org/10.1175/1520-0450(2001)040<0642:OTLSAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, K., and C. Mullins, Eds., 2001: Soil and Environmental Analysis: Physical Methods. Taylor and Francis, 656 pp.

  • Tétreault-Pinard, É., 2013: Linking soil moisture and summertime surface temperature variability. Ph.D. thesis, University of Washington, 154 pp.

  • Teuling, A. J., and Coauthors, 2009: A regional perspective on trends in continental evaporation. Geophys. Res. Lett., 36, L02404, https://doi.org/10.1029/2008GL036584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tigchelaar, M., D. S. Battisti, R. L. Naylor, and D. K. Ray, 2018: Future warming increases probability of globally synchronized maize production shocks. Proc. Natl. Acad. Sci. USA, 115, 66446649, https://doi.org/10.1073/PNAS.1718031115.

    • Search Google Scholar
    • Export Citation
  • Tingley, M. P., and P. Huybers, 2013: Recent temperature extremes at high northern latitudes unprecedented in the past 600 years. Nature, 496, 201205, https://doi.org/10.1038/nature11969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, B., Z. Gao, R. Horton, Y. Li, and L. Wang, 2016: An empirical model for estimating soil thermal conductivity from soil water content and porosity. J. Hydrometeor., 17, 601613, https://doi.org/10.1175/JHM-D-15-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troyan, D., and M. Jensen, 1998: Interpolated sonde. Atmospheric Radiation Measurement (ARM) Climate Research Facility, accessed 14 June 2018, https://doi.org/10.5439/1095316.

    • Crossref
    • Export Citation
  • van Heerwaarden, C. C., J. Vilà-Guerau de Arellano, A. Gounou, F. Guichard, and F. Couvreux, 2010: Understanding the daily cycle of evapotranspiration: A method to quantify the influence of forcings and feedbacks. J. Hydrometeor., 11, 14051422, https://doi.org/10.1175/2010JHM1272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vidale, P., D. Lüthi, R. Wegmann, and C. Schär, 2007: European summer climate variability in a heterogeneous multi-model ensemble. Climatic Change, 81, 209232, https://doi.org/10.1007/s10584-006-9218-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, Z., K. Yoshimura, L. Wang, D. G. Miralles, S. Jasechko, and X. Lee, 2017: Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett., 44, 27922801, https://doi.org/10.1002/2016GL072235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., and X. Chen, 2012: ARM best estimate data products. ARM Climate Research Facility, accessed 14 June 2018, https://doi.org/10.5439/1039931.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 155 155 56
PDF Downloads 159 159 46

The Origin of Soil Moisture Evaporation “Regimes”

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

Evaporation plays an extremely important role in determining summertime surface temperature variability over land. Observations show the relationship between evaporation and soil moisture generally conforms to the Budyko “two regime” framework; namely, that evaporation is limited by available soil moisture in dry climates and by radiation in wet climates. This framework has led climate models to different parameterizations of the relationship between evaporation and soil moisture in wet and dry regions. We have developed the Simple Land–Atmosphere Model (SLAM) as a tool for studying land–atmosphere interaction in general, and summertime temperature variability in particular. We use the SLAM to show that a negative feedback between evaporation and surface temperature gives rise to the two apparent evaporation “regimes” and provide analytic solutions for evaporative cooling anomalies that demonstrate the nonlinear impact of soil moisture perturbations. Stemming from the temperature dependence of vapor pressure deficit, the feedback we identify has important implications for how transitions between wet and dry land surfaces may impact temperature variability as the climate warms. We also elucidate the impacts of surface moisture and insolation perturbations on latent and sensible heat fluxes and on surface temperature variability.

Current affiliation: Department of Earth and Space Science, University of Washington, Seattle, Washington.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lucas R. Vargas Zeppetello, lvz7@uw.edu

Abstract

Evaporation plays an extremely important role in determining summertime surface temperature variability over land. Observations show the relationship between evaporation and soil moisture generally conforms to the Budyko “two regime” framework; namely, that evaporation is limited by available soil moisture in dry climates and by radiation in wet climates. This framework has led climate models to different parameterizations of the relationship between evaporation and soil moisture in wet and dry regions. We have developed the Simple Land–Atmosphere Model (SLAM) as a tool for studying land–atmosphere interaction in general, and summertime temperature variability in particular. We use the SLAM to show that a negative feedback between evaporation and surface temperature gives rise to the two apparent evaporation “regimes” and provide analytic solutions for evaporative cooling anomalies that demonstrate the nonlinear impact of soil moisture perturbations. Stemming from the temperature dependence of vapor pressure deficit, the feedback we identify has important implications for how transitions between wet and dry land surfaces may impact temperature variability as the climate warms. We also elucidate the impacts of surface moisture and insolation perturbations on latent and sensible heat fluxes and on surface temperature variability.

Current affiliation: Department of Earth and Space Science, University of Washington, Seattle, Washington.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lucas R. Vargas Zeppetello, lvz7@uw.edu
Save