• Abbot, C. G., and F. E. Fowle, 1908: Radiation and terrestrial temperature. Ann. Astrophys. Obs. Smithson. Inst., 2, 125224.

  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342, https://doi.org/10.1126/science.1092779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 4156, https://doi.org/10.1175/JCLI-D-13-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., O. Boucher, D. V. Spracklen, G. W. Mann, J. G. L. Rae, S. Woodward, and M. Kulmala, 2010: A review of natural aerosol interactions and feedbacks within the Earth system. Atmos. Chem. Phys., 10, 17011737, https://doi.org/10.5194/acp-10-1701-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cescatti, A., and Coauthors, 2012: Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network. Remote Sens. Environ., 121, 323334, https://doi.org/10.1016/j.rse.2012.02.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2018: Ensemble averaging and the curse of dimensionality. J. Climate, 31, 15871596, https://doi.org/10.1175/JCLI-D-17-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colbo, K., and R. A. Weller, 2009: Accuracy of the IMET sensor package in the subtropics. J. Atmos. Oceanic Technol., 26, 18671890, https://doi.org/10.1175/2009JTECHO667.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., and D. S. Battisti, 2013: The seasonal cycle of atmospheric heating and temperature. J. Climate, 26, 49624980, https://doi.org/10.1175/JCLI-D-12-00713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., K. C. Armour, A. G. Pendergrass, and D. S. Battisti, 2014: Shortwave and longwave radiative contributions to global warming under increasing CO2. Proc. Natl. Acad. Sci. USA, 111, 16 70016 705, https://doi.org/10.1073/pnas.1412190111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutton, E., C. Long, M. Wild, A. Ohmura, J. Groebner, and A. Roesch, 2012: Long-term in-situ surface flux data products. GEWEX Radiative Flux Assessment (RFA), Vol. 1, WCRP Rep. 19/2012, 135–158.

  • Dwyer, J. G., M. Biasutti, and A. H. Sobel, 2012: Projected changes in the seasonal cycle of surface temperature. J. Climate, 25, 63596374, https://doi.org/10.1175/JCLI-D-11-00741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and K. E. Trenberth, 2008a: The annual cycle of the energy budget. Part I: Global mean and land–ocean exchanges. J. Climate, 21, 22972312, https://doi.org/10.1175/2007JCLI1935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and K. E. Trenberth, 2008b: The annual cycle of the energy budget. Part II: Meridional structures and poleward transports. J. Climate, 21, 23132325, https://doi.org/10.1175/2007JCLI1936.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., A. T. Evan, H. P. Freitag, S. Brown, and M. J. McPhaden, 2013: Dust accumulation biases in PIRATA shortwave radiation records. J. Atmos. Oceanic Technol., 30, 14141432, https://doi.org/10.1175/JTECH-D-12-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaffen, D. J., A. Robock, and W. P. Elliott, 1992: Annual cycles of tropospheric water vapor. J. Geophys. Res., 97, 18 18518 193, https://doi.org/10.1029/92JD01999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilgen, H., M. Wild, and A. Ohmura, 1998: Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data. J. Climate, 11, 20422061, https://doi.org/10.1175/1520-0442-11.8.2042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance metrics for climate models. J. Geophys. Res., 113, D06104, https://doi.org/10.1029/2007JD008972.

    • Search Google Scholar
    • Export Citation
  • Grant, I. F., A. J. Prata, and R. P. Cechet, 2000: The impact of the diurnal variation of albedo on the remote sensing of the daily mean albedo of grassland. J. Appl. Meteor., 39, 231244, https://doi.org/10.1175/1520-0450(2000)039<0231:TIOTDV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakuba, M. Z., D. Folini, A. Sanchez-Lorenzo, and M. Wild, 2013: Spatial representativeness of ground-based solar radiation measurements. J. Geophys. Res. Atmos., 118, 85858597, https://doi.org/10.1002/jgrd.50673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakuba, M. Z., D. Folini, A. Sanchez-Lorenzo, and M. Wild, 2014a: Spatial representativeness of ground-based solar radiation measurements—Extension to the full Meteosat disk. J. Geophys. Res., 119, 11 76011 771, https://doi.org/10.1002/2014JD021946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakuba, M. Z., D. Folini, G. Schaepman-Strub, and M. Wild, 2014b: Solar absorption over Europe from collocated surface and satellite observations. J. Geophys. Res., 119, 34203437, https://doi.org/10.1002/2013JD021421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakuba, M. Z., D. Folini, and M. Wild, 2016: On the zonal near-constancy of fractional solar absorption in the atmosphere. J. Climate, 29, 34233440, https://doi.org/10.1175/JCLI-D-15-0277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 68316864, https://doi.org/10.1029/96JD03436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hyder, P., and Coauthors, 2018: Critical Southern Ocean climate model biases traced to atmospheric model cloud errors. Nat. Commun., 9, 3625, https://doi.org/10.1038/s41467-018-05634-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Y., C. B. Schaaf, F. Gao, X. Li, A. H. Strahler, W. Lucht, and S. Liang, 2003: Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 1. Algorithm performance. J. Geophys. Res., 108, 4158, https://doi.org/10.1029/2002JD002803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., 2009: Interannual variability of the global radiation budget. J. Climate, 22, 48934907, https://doi.org/10.1175/2009JCLI2795.1.

  • Kato, S., N. G. Loeb, F. G. Rose, D. R. Doelling, D. A. Rutan, T. E. Caldwell, L. Yu, and R. A. Weller, 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Climate, 26, 27192740, https://doi.org/10.1175/JCLI-D-12-00436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2018: Surface irradiances of edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Climate, 31, 45014527, https://doi.org/10.1175/JCLI-D-17-0523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78, 197208, https://doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kopp, G., G. Lawrence, and G. Rottman, 2005: The Total Irradiance Monitor (TIM): Science results. The Solar Radiation and Climate Experiment (SORCE): Mission Description and Early Results, G. Rottman, T. Woods, and V. George, Eds., Springer, 129–139, https://doi.org/10.1007/0-387-37625-9.

    • Crossref
    • Export Citation
  • Koren, I., Y. J. Kaufman, L. A. Remer, and J. V. Martins, 2004: Measurement of the effect of Amazon smoke on inhibition of cloud formation. Science, 303, 13421345, https://doi.org/10.1126/science.1089424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, S. J., and G. J. Boer, 2001: CMIP1 evaluation and intercomparison of coupled climate models. Climate Dyn., 17, 83106, https://doi.org/10.1007/PL00013736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and Coauthors, 2015: The observed state of the energy budget in the early twenty-first century. J. Climate, 28, 83198346, https://doi.org/10.1175/JCLI-D-14-00556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, S., and Coauthors, 2002: Validating MODIS land surface reflectance and albedo products: Methods and preliminary results. Remote Sens. Environ., 83, 149162, https://doi.org/10.1016/S0034-4257(02)00092-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., and Coauthors, 2009: Validation of Moderate Resolution Imaging Spectroradiometer (MODIS) albedo retrieval algorithm: Dependence of albedo on solar zenith angle. J. Geophys. Res., 114, D01106, https://doi.org/10.1029/2008JD009969.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., J. M. Lyman, G. C. Johnson, R. P. Allan, D. R. Doelling, T. Wong, B. J. Soden, and G. L. Stephens, 2012: Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci., 5, 110113, https://doi.org/10.1038/ngeo1375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and Coauthors, 2018: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J. Climate, 31, 895918, https://doi.org/10.1175/JCLI-D-17-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, C. N., and T. P. Ackerman, 2000: Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects. J. Geophys. Res., 105, 15 60915 626, https://doi.org/10.1029/2000JD900077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McArthur, L., 2005: Baseline Surface Radiation Network (BSRN). Operations Manual, Version 2.1. WMO/TD-No. 1274, World Climate Research Programme. 176 pp., https://bsrn.awi.de/other/manuals/.

  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean–Global Atmosphere observing system: A decade of progress. J. Geophys. Res. Oceans, 103, 14 16914 240, https://doi.org/10.1029/97JC02906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2009: RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90, 459480, https://doi.org/10.1175/2008BAMS2608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meijers, A. J. S., 2014: The Southern Ocean in the Coupled Model Intercomparison Project phase 5. Philos. Trans. Roy. Soc., 372A, 20130296, https://doi.org/10.1098/rsta.2013.0296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlynczak, P. E., G. L. Smith, and D. R. Doelling, 2011: The annual cycle of Earth radiation budget from Clouds and the Earth’s Radiant Energy System (CERES) data. J. Appl. Meteor. Climatol., 50, 24902503, https://doi.org/10.1175/JAMC-D-11-050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohmura, A., and Coauthors, 1998: Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull. Amer. Meteor. Soc., 79, 21152136, https://doi.org/10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 21192124, https://doi.org/10.1126/science.1064034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and Coauthors, 2005: Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proc. Natl. Acad. Sci. USA, 102, 53265333, https://doi.org/10.1073/pnas.0500656102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roesch, A., M. Wild, A. Ohmura, E. G. Dutton, C. N. Long, and T. Zhang, 2011: Assessment of BSRN radiation records for the computation of monthly means. Atmos. Meas. Tech., 4, 339354, https://doi.org/10.5194/amt-4-339-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Román, M. O., and Coauthors, 2009: The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes. Remote Sens. Environ., 113, 24762498, https://doi.org/10.1016/j.rse.2009.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Román, M. O., and Coauthors, 2013: Use of in situ and airborne multiangle data to assess MODIS- and Landsat-based estimates of directional reflectance and albedo. IEEE Trans. Geosci. Remote Sens., 51, 13931404, https://doi.org/10.1109/TGRS.2013.2243457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and A. A. Lacis, 1990: Global, seasonal cloud variations from satellite radiance measurements. Part II. Cloud properties and radiative effects. J. Climate, 3, 12041253, https://doi.org/10.1175/1520-0442(1990)003<1204:GSCVFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rougier, J., 2016: Ensemble averaging and mean squared error. J. Climate, 29, 88658870, https://doi.org/10.1175/JCLI-D-16-0012.1.

  • Rutan, D. A., S. Kato, D. R. Doelling, F. G. Rose, L. T. Nguyen, T. E. Caldwell, and N. G. Loeb, 2015: CERES synoptic product: Methodology and validation of surface radiant flux. J. Atmos. Oceanic Technol., 32, 11211143, https://doi.org/10.1175/JTECH-D-14-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salomon, J., C. Schaaf, A. Strahler, F. Gao, and Y. Jin, 2006: Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the Aqua and Terra platforms. IEEE Trans. Geosci. Remote Sens., 44, 15551565, https://doi.org/10.1109/TGRS.2006.871564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2018: Human influence on the seasonal cycle of tropospheric temperature. Science, 361, eaas8806, https://doi.org/10.1126/science.aas8806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaaf, C. B., and Z. Wang, 2015: MCD43A1 MODIS/Terra+Aqua BRDF/Albedo Model Parameters Daily L3 Global - 500m V006. NASA EOSDIS Land Processes DAAC, accessed March 2019, https://doi.org/10.5067/MODIS/MCD43A1.006.

    • Crossref
    • Export Citation
  • Schaaf, C. B., and Coauthors, 2002: First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ., 83, 135148, https://doi.org/10.1016/S0034-4257(02)00091-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaaf, C. B., J. Liu, F. Gao, and A. H. Strahler, 2010: Aqua and Terra MODIS albedo and reflectance anisotropy products. Land Remote Sensing and Global Environmental Change: NASA’s Earth Observing System and the Science of ASTER and MODIS, B. Ramachandran, C. O. Justice, and M. J. Abrams, Eds., Springer 549–561.

    • Crossref
    • Export Citation
  • Schaepman-Strub, G., M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, 2006: Reflectance quantities in optical remote sensing—Definitions and case studies. Remote Sens. Environ., 103, 2742, https://doi.org/10.1016/j.rse.2006.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schutgens, N. A. J., D. G. Partridge, and P. Stier, 2016: The importance of temporal collocation for the evaluation of aerosol models with observations. Atmos. Chem. Phys., 16, 10651079, https://doi.org/10.5194/acp-16-1065-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarz, M., D. Folini, M. Z. Hakuba, and M. Wild, 2017: Spatial representativeness of surface-measured variations of downward solar radiation. J. Geophys. Res. Atmos., 122, 13 31913 337, https://doi.org/10.1002/2017JD027261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarz, M., D. Folini, M. Z. Hakuba, and M. Wild, 2018: From point to area: Worldwide assessment of the representativeness of monthly surface solar radiation records. J. Geophys. Res. Atmos., 123, 13 85713 874, https://doi.org/10.1029/2018JD029169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Servain, J., A. J. Busalacchi, M. J. McPhaden, A. D. Moura, G. Reverdin, M. Vianna, and S. E. Zebiak, 1998: A Pilot Research Moored Array in the Tropical Atlantic (PIRATA). Bull. Amer. Meteor. Soc., 79, 20192032, https://doi.org/10.1175/1520-0477(1998)079<2019:APRMAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, G.-Y., T. Hayasaka, A. Ohmura, Z.-H. Chen, B. Wang, J.-Q. Zhao, H.-Z. Che, and L. Xu, 2008: Data quality assessment and the long-term trend of ground solar radiation in China. J. Appl. Meteor. Climatol., 47, 10061016, https://doi.org/10.1175/2007JAMC1493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simoneit, B. R. T., 2002: Biomass burning—A review of organic tracers for smoke from incomplete combustion. Appl. Geochem., 17, 129162, https://doi.org/10.1016/S0883-2927(01)00061-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, https://doi.org/10.1038/ngeo1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornhill, G. D., C. L. Ryder, E. J. Highwood, L. C. Shaffrey, and B. T. Johnson, 2018: The effect of South American biomass burning aerosol emissions on the regional climate. Atmos. Chem. Phys., 18, 53215342, https://doi.org/10.5194/acp-18-5321-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2004: The flow of energy through the Earth’s climate system. Quart. J. Roy. Meteor. Soc., 130, 26772701, https://doi.org/10.1256/qj.04.83.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2009: Global warming due to increasing absorbed solar radiation. Geophys. Res. Lett., 36, L07706, https://doi.org/10.1029/2009GL037527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the Southern Oceans. J. Climate, 23, 440454, https://doi.org/10.1175/2009JCLI3152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311324, https://doi.org/10.1175/2008BAMS2634.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Y. Zhang, J. T. Fasullo, and S. Taguchi, 2015: Climate variability and relationships between top-of-atmosphere radiation and temperatures on Earth. J. Geophys. Res. Atmos., 120, 3642–3659, https://doi.org/10.1002/2014JD022887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., S. Liang, T. He, Y. Yu, C. Schaaf, and Z. Wang, 2015: Estimating daily mean land surface albedo from MODIS data. J. Geophys. Res. Atmos., 120, 48254841, https://doi.org/10.1002/2015JD023178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2012: Evaluation of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow albedo product (MCD43A) over tundra. Remote Sens. Environ., 117, 264280, https://doi.org/10.1016/j.rse.2011.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2014: Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sens. Environ., 140, 6077, https://doi.org/10.1016/j.rse.2013.08.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanner, W., A. H. Strahler, B. Hu, P. Lewis, J.-P. Muller, X. Li, C. L. B. Schaaf, and M. J. Barnsley, 1997: Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data: Theory and algorithm. J. Geophys. Res., 102, 17 14317 161, https://doi.org/10.1029/96JD03295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee, G, L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., 1999: Discrepancies between model-calculated and observed shortwave atmospheric absorption in areas with high aerosol loadings. J. Geophys. Res., 104, 27 36127 371, https://doi.org/10.1029/1999JD900925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., 2008: Short-wave and long-wave surface radiation budgets in GCMs: A review based on the IPCC-AR4/CMIP3 models. Tellus, 60A, 932945, https://doi.org/10.1111/j.1600-0870.2008.00342.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., 2012: New directions: A facelift for the picture of the global energy balance. Atmos. Environ., 55, 366367, https://doi.org/10.1016/j.atmosenv.2012.03.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., and Coauthors, 2015: The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models. Climate Dyn., 44, 33933429, https://doi.org/10.1007/s00382-014-2430-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., A. Ohmura, C. Schär, G. Müller, D. Folini, M. Schwarz, M. Z. Hakuba, and A. Sanchez-Lorenzo, 2017: The Global Energy Balance Archive (GEBA) version 2017: A database for worldwide measured surface energy fluxes. Earth Syst. Sci. Data, 9, 601613, https://doi.org/10.5194/essd-9-601-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., X. L. Wang, and M. Wild, 2018: Homogenization and trend analysis of the 1958–2016 in situ surface solar radiation records in China. J. Climate, 31, 45294541, https://doi.org/10.1175/JCLI-D-17-0891.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., C. Zhao, J. Guo, and Y. Wang, 2016: Intensification of aerosol pollution associated with its feedback with surface solar radiation and winds in Beijing. J. Geophys. Res. Atmos., 121, 40934099, https://doi.org/10.1002/2015JD024645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., R. Fu, H. Yu, R. E. Dickinson, R. N. Juarez, M. Chin, and H. Wang, 2008: A regional climate model study of how biomass burning aerosol impacts land–atmosphere interactions over the Amazon. J. Geophys. Res., 113, D14S15, https://doi.org/10.1029/2007JD009449.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 54 54 10
PDF Downloads 203 203 17

The Annual Cycle of Fractional Atmospheric Shortwave Absorption in Observations and Models: Spatial Structure, Magnitude, and Timing

View More View Less
  • 1 Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
  • 2 National Meteorological Information Centre, China Meteorological Administration, Beijing, China
  • 3 Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
© Get Permissions
Restricted access

Abstract

We use the best currently available in situ and satellite-derived surface and top-of-the-atmosphere (TOA) shortwave radiation observations to explore climatological annual cycles of fractional (i.e., normalized by incoming radiation at the TOA) atmospheric shortwave absorption a˜ on a global scale. The analysis reveals that a˜ is a rather regional feature where the reported nonexisting a˜ in Europe is an exception rather than the rule. In several regions, large and distinctively different a˜ are apparent. The magnitudes of a˜ reach values up to 10% in some regions, which is substantial given that the long-term global mean atmospheric shortwave absorption is roughly 23%. Water vapor and aerosols are identified as major drivers for a˜ while clouds seem to play only a minor role for a˜. Regions with large annual cycles in aerosol emissions from biomass burning also show the largest a˜. As biomass burning is generally related to human activities, a˜ is likely also anthropogenically intensified or forced in the respective regions. We also test if climate models are able to simulate the observed pattern of a˜. In regions where a˜ is driven by the annual cycle of natural aerosols or water vapor, the models perform well. In regions with large a˜ induced by biomass-burning aerosols, the models’ performance is very limited.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. Schwarz, matthias.schwarz@env.ethz.ch

Abstract

We use the best currently available in situ and satellite-derived surface and top-of-the-atmosphere (TOA) shortwave radiation observations to explore climatological annual cycles of fractional (i.e., normalized by incoming radiation at the TOA) atmospheric shortwave absorption a˜ on a global scale. The analysis reveals that a˜ is a rather regional feature where the reported nonexisting a˜ in Europe is an exception rather than the rule. In several regions, large and distinctively different a˜ are apparent. The magnitudes of a˜ reach values up to 10% in some regions, which is substantial given that the long-term global mean atmospheric shortwave absorption is roughly 23%. Water vapor and aerosols are identified as major drivers for a˜ while clouds seem to play only a minor role for a˜. Regions with large annual cycles in aerosol emissions from biomass burning also show the largest a˜. As biomass burning is generally related to human activities, a˜ is likely also anthropogenically intensified or forced in the respective regions. We also test if climate models are able to simulate the observed pattern of a˜. In regions where a˜ is driven by the annual cycle of natural aerosols or water vapor, the models perform well. In regions with large a˜ induced by biomass-burning aerosols, the models’ performance is very limited.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. Schwarz, matthias.schwarz@env.ethz.ch
Save