• Ackerman, S. A., R. E. Holz, R. Frey, E. W. Eloranta, B. C. Maddux, and M. McGill, 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25, 10731086, https://doi.org/10.1175/2007JTECHA1053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, M., and A. D. Del Genio, 2006: Composite analysis of winter cyclones in a GCM: Influence on climatological humidity. J. Climate, 19, 16521672, https://doi.org/10.1175/JCLI3690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, M., G. Tselioudis, and W. B. Rossow, 2016: A new climatology for investigating storm influences in and on the extratropics. J. Appl. Meteor. Climatol., 55, 12871303, https://doi.org/10.1175/JAMC-D-15-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043, https://doi.org/10.1175/2011BAMS2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., K. D. Williams, P. R. Field, and A. P. Lock, 2012: The surface downwelling solar radiation surplus over the Southern Ocean in the Met Office Model: The role of midlatitude cyclone clouds. J. Climate, 25, 74677486, https://doi.org/10.1175/JCLI-D-11-00702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 4156, https://doi.org/10.1175/JCLI-D-13-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., C. M. Naud, and A. D. Del Genio, 2013: Diagnosing warm frontal cloud formation in a GCM: A novel approach using conditional subsetting. J. Climate, 26, 58275845, https://doi.org/10.1175/JCLI-D-12-00637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882, https://doi.org/10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1986: Conceptual models of precipitation systems. Wea. Forecasting, 1, 2341, https://doi.org/10.1175/1520-0434(1986)001<0023:CMOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. L. Hartmann, 2016: Clouds and the atmospheric circulation response to warming. J. Climate, 29, 783799, https://doi.org/10.1175/JCLI-D-15-0394.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation systems. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., C. Seman, R. Hemler, and S.-M. Fan, 2001: A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects. J. Climate, 14, 34443463, https://doi.org/10.1175/1520-0442(2001)014<3444:ACPIMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, https://doi.org/10.1175/2011JCLI3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. Gettelman, R. Neale, R. Wood, P. J. Rasch, and H. Morrison, 2008: Midlatitude cyclone compositing to constrain climate model behavior using satellite observations. J. Climate, 21, 58875903, https://doi.org/10.1175/2008JCLI2235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. Bodas-Salcedo, and M. E. Brooks, 2011: Using model analysis and satellite data to assess cloud and precipitation in midlatitude cyclones. Quart. J. Roy. Meteor. Soc., 137, 15011515, https://doi.org/10.1002/qj.858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frey, W. R., and J. E. Kay, 2018: The influence of extratropical cloud phase and amount feedbacks on climate sensitivity. Climate Dyn., 50, 30973116, https://doi.org/10.1007/s00382-017-3796-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., L. W. Horowitz, and H. Levy II, 2013: Cloud tuning in a coupled climate model: Impact on 20th century warming. Geophys. Res. Lett., 40, 22462251, https://doi.org/10.1002/grl.50232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Govekar, P. D., C. Jakob, and J. Catto, 2014: The relationship between clouds and dynamics in Southern Hemisphere extratropical cyclones in the real world and a climate model. J. Geophys. Res. Atmos., 119, 66096628, https://doi.org/10.1002/2013JD020699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and B. Medeiros, 2016: Understanding the varied influence of midlatitude jet position on clouds and cloud radiative effects in observations and global climate models. J. Climate, 29, 90059025, https://doi.org/10.1175/JCLI-D-16-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewson, T. D., 1998: Objective fronts. Meteor. Appl., 5, 3765, https://doi.org/10.1017/S1350482798000553.

  • Hourdin, F., and Coauthors, 2017: The art and science of climate model tuning. Bull. Amer. Meteor. Soc., 98, 589602, https://doi.org/10.1175/BAMS-D-15-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell, and C. Bitz, 2016: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Climate, 29, 46174636, https://doi.org/10.1175/JCLI-D-15-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 25142531, https://doi.org/10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamraoui, F., J. F. Booth, C. M. Naud, M. Jensen, and K. L. Johnson, 2019: The interaction between boundary layer and convection schemes in a WRF simulation of post cold frontal clouds over the ARM East North Atlantic site. J. Geophys. Res. Atmos., 124, 46994721, https://doi.org/10.1029/2018JD029370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and Coauthors, 2018: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J. Climate, 31, 895918, https://doi.org/10.1175/JCLI-D-17-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and Q. Zhang, 2014: The CloudSat radar-lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res. Atmos., 119, 94419462, https://doi.org/10.1002/2013JD021374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and Coauthors, 2008: MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteor. Climatol., 47, 11751198, https://doi.org/10.1175/2007JAMC1705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, A. E., S. T. Siems, and M. J. Manton, 2011: A three-year climatology of cloud-top phase over the Southern Ocean and North Pacific. J. Climate, 24, 24052418, https://doi.org/10.1175/2010JCLI3842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., A. D. Del Genio, M. Bauer, and W. Kovari, 2010: Cloud vertical distribution across warm and cold fronts in CloudSatCALIPSO data and a general circulation model. J. Climate, 23, 3397341, https://doi.org/10.1175/2010JCLI3282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, D. J. Posselt, and S. C. van den Heever, 2013: Multiple satellite observations of cloud cover in extratropical cyclones. J. Geophys. Res., 118, 99829996, https://doi.org/10.1002/JGRD.50718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, and A. D. Del Genio, 2014: Evaluation of ERA-Interim and MERRA cloudiness in the Southern Ocean. J. Climate, 27, 21092124, https://doi.org/10.1175/JCLI-D-13-00432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., D. J. Posselt, and S. C. van den Heever, 2015: A CloudSat–CALIPSO view of cloud and precipitation properties across cold fronts over the global oceans. J. Climate, 28, 67436762, https://doi.org/10.1175/JCLI-D-15-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, and A. D. Del Genio, 2016: The relationship between boundary later stability and cloud cover in the post-cold-frontal region. J. Climate, 29, 81298149, https://doi.org/10.1175/JCLI-D-15-0700.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., D. J. Posselt, and S. C. van den Heever, 2018: Reply to “Comments on ‘A CloudSat–CALIPSO view of cloud and precipitation properties across cold fronts over the global oceans.’” J. Climate, 31, 29692975, https://doi.org/10.1175/JCLI-D-17-0777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salomonson, V. V., W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, 1989: MODIS: Advanced facility instrument for studies of the Earth as a system. IEEE Trans. Geosci. Remote Sens., 27, 145153, https://doi.org/10.1109/36.20292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2017: Practice and philosophy of climate model tuning across six U.S. modeling centers. Geosci. Model Dev., 10, 32073223, https://doi.org/10.5194/gmd-10-3207-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., K. Keay, and J. A. T. Bye, 2012: Identification and climatology of Southern Hemisphere mobile fronts in a modern reanalysis. J. Climate, 25, 19451962, https://doi.org/10.1175/JCLI-D-11-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, H., Z. Zhang, P. L. Ma, S. J. Ghan, and M. Wang, 2018: An evaluation of marine boundary layer cloud property simulations in the Community Atmosphere Model using satellite observations: Conventional subgrid parameterization versus CLUBB. J. Climate, 31, 22992320, https://doi.org/10.1175/JCLI-D-17-0277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-TRAIN: A new dimension to space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanelli, S., S. L. Durden, E. Im, K. S. Pak, D. G. Reinke, P. Partain, J. M. Haynes, and R. T. Marchand, 2008: CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573, https://doi.org/10.1109/TGRS.2008.2002030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets in the Southern Ocean. J. Climate, 23, 440454, https://doi.org/10.1175/2009JCLI3152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wall, C. J., D. L. Hartmann, and P.-L. Ma, 2017: Instantaneous linkages between clouds and large-scale meteorology over the southern ocean in observations and a climate model. J. Climate, 30, 94559474, https://doi.org/10.1175/JCLI-D-17-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., M. A. Vaughan, A. H. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, https://doi.org/10.1175/2009JTECHA1281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, https://doi.org/10.1175/JCLI3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B. Q., M. Zhao, Y. Ming, W. D. Yu, and S. M. Kang, 2018: Contrasting impacts of radiative forcing in the Southern Ocean versus southern tropics on ITCZ position and energy transport in one GFDL climate model. J. Climate, 31, 56095628, https://doi.org/10.1175/JCLI-D-17-0566.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, https://doi.org/10.1175/2009JCLI3049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2016: Uncertainty in model climate sensitivity traced to representations of cumulus precipitation microphysics. J. Climate, 29, 543560, https://doi.org/10.1175/JCLI-D-15-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2018a: The GFDL global atmosphere and land model AM4.0/LM4.0: 1. Simulations characteristics with prescribed SSTs. J. Adv. Model. Earth Syst., 10, 691734, https://doi.org/10.1002/2017MS001208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2018b: The GFDL global atmosphere and land model AM4.0/LM4.0: 2. Model description, sensitivity studies, and tuning strategies. J. Adv. Model. Earth Syst., 10, 735769, https://doi.org/10.1002/2017MS001209.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 237 237 56
PDF Downloads 90 90 19

Extratropical Cyclone Clouds in the GFDL Climate Model: Diagnosing Biases and the Associated Causes

View More View Less
  • 1 Department of Applied Physics and Applied Mathematics, Columbia University/NASA Goddard Institute for Space Studies, New York, New York
  • 2 Department of Earth and Atmospheric Sciences, City College of New York, City University of New York, New York, New York
  • 3 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • 4 University Corporation for Atmospheric Research/Cooperative Programs for the Advancement of Earth System Science, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • 5 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

The clouds in Southern Hemisphere extratropical cyclones generated by the GFDL climate model are analyzed against MODIS, CloudSat, and CALIPSO cloud and precipitation observations. Two model versions are used: one is a developmental version of “AM4,” a model GFDL that will utilize for CMIP6, and the other is the same model with a different parameterization of moist convection. Both model versions predict a realistic top-of-atmosphere cloud cover in the southern oceans, within 5% of the observations. However, an examination of cloud cover transects in extratropical cyclones reveals a tendency in the models to overestimate high-level clouds (by differing amounts) and underestimate cloud cover at low levels (again by differing amounts), especially in the post–cold frontal (PCF) region, when compared with observations. In focusing only on the models, it is seen that their differences in high and midlevel clouds are consistent with their differences in convective activity and relative humidity (RH), but the same is not true for the PCF region. In this region, RH is higher in the model with less cloud fraction. These seemingly contradictory cloud and RH differences can be explained by differences in the cloud-parameterization tuning parameters that ensure radiative balance. In the PCF region, the model cloud differences are smaller than either of the model biases with respect to observations, suggesting that other physics changes are needed to address the bias. The process-oriented analysis used to assess these model differences will soon be automated and shared.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Process-Oriented Model Diagnostics Special Collection.

Corresponding author: Catherine M. Naud, cn2140@columbia.edu

Abstract

The clouds in Southern Hemisphere extratropical cyclones generated by the GFDL climate model are analyzed against MODIS, CloudSat, and CALIPSO cloud and precipitation observations. Two model versions are used: one is a developmental version of “AM4,” a model GFDL that will utilize for CMIP6, and the other is the same model with a different parameterization of moist convection. Both model versions predict a realistic top-of-atmosphere cloud cover in the southern oceans, within 5% of the observations. However, an examination of cloud cover transects in extratropical cyclones reveals a tendency in the models to overestimate high-level clouds (by differing amounts) and underestimate cloud cover at low levels (again by differing amounts), especially in the post–cold frontal (PCF) region, when compared with observations. In focusing only on the models, it is seen that their differences in high and midlevel clouds are consistent with their differences in convective activity and relative humidity (RH), but the same is not true for the PCF region. In this region, RH is higher in the model with less cloud fraction. These seemingly contradictory cloud and RH differences can be explained by differences in the cloud-parameterization tuning parameters that ensure radiative balance. In the PCF region, the model cloud differences are smaller than either of the model biases with respect to observations, suggesting that other physics changes are needed to address the bias. The process-oriented analysis used to assess these model differences will soon be automated and shared.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Process-Oriented Model Diagnostics Special Collection.

Corresponding author: Catherine M. Naud, cn2140@columbia.edu
Save