• Abrahamse, W., and R. Shwom, 2018: Domestic energy consumption and climate change mitigation. Wiley Interdiscip. Rev.: Climate Change, 9, e525, https://doi.org/10.1002/WCC.525.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, https://doi.org/10.1126/science.1160787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 228232, https://doi.org/10.1038/NATURE01092.

    • Search Google Scholar
    • Export Citation
  • Barry, R., and T. Y. Gan, 2011: Global Cryosphere, Past, Present and Future. Cambridge University Press, 498 pp.

  • Benyahya, L., P. Gachon, A. St-Hilaire, and R. Laprise, 2014: Frequency analysis of seasonal extreme precipitation in southern Quebec (Canada): An evaluation of regional climate model simulation with respect to two gridded datasets. Hydrol. Res., 45, 115133, https://doi.org/10.2166/nh.2013.066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonsal, B. R., and C. Cuell, 2017: Hydro-climatic variability and extremes over the Athabasca River basin: Historical trends and projected future occurrence. Can. Water Resour. J., 42, 315335, https://doi.org/10.1080/07011784.2017.1328288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonsal, B. R., E. E. Wheaton, A. C. Chipanshi, C. Lin, D. J. Sauchyn, and L. Wen, 2011: Drought research in Canada: A review. Atmos.–Ocean, 49, 303319, https://doi.org/10.1080/07055900.2011.555103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonsal, B. R., C. Cuell, E. Wheaton, D. J. Sauchyn, and E. Barrow, 2017: An assessment of historical and projected future hydro-climatic variability and extremes over southern watersheds in the Canadian Prairies. Int. J. Climatol., 37, 39343948, https://doi.org/10.1002/joc.4967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R., C. Derksen, and L. Wang, 2010: A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008. J. Geophys. Res., 115, D16111, https://doi.org/10.1029/2010JD013975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, A. J., S. R. Sobie, and T. Q. Murdock, 2015: Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? J. Climate, 28, 69386959, https://doi.org/10.1175/JCLI-D-14-00754.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassano, E. N., and J. J. Cassano, 2010: Synoptic forcing of precipitation in the Mackenzie and Yukon River basins. Int. J. Climatol., 30, 658674, https://doi.org/10.1002/JOC.1926.

    • Search Google Scholar
    • Export Citation
  • Cassano, E. N., A. H. Lynch, J. J. Cassano, and M. R. Koslow, 2006: Classification of synoptic patterns in the western Arctic associated with extreme events at Barrow, Alaska, USA. Climate Res., 30, 8397, https://doi.org/10.3354/cr030083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassano, E. N., J. J. Cassano, and M. Nolan, 2011: Synoptic weather pattern controls on temperature in Alaska. J. Geophys. Res., 116, D11108, https://doi.org/10.1029/2010JD015341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., P. Uotila, A. H. Lynch, and E. N. Cassano, 2007: Predicted changes in synoptic forcing of net precipitation in large Arctic river basins during the 21st century. J. Geophys. Res., 112, G04S49, https://doi.org/10.1029/2006JG000332.

    • Search Google Scholar
    • Export Citation
  • Cattiaux, J., H. Douville, and Y. Peings, 2013: European temperatures in CMIP5: Origins of present-day biases and future uncertainties. Climate Dyn., 41, 28892907, https://doi.org/10.1007/s00382-013-1731-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, J.-E., S. N. Hameed, and K.-J. Ha, 2012: Nonlinear, intraseasonal phases of the East Asian summer monsoon: Extraction and analysis using self-organizing maps. J. Climate, 25, 69756988, https://doi.org/10.1175/JCLI-D-11-00512.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., V. Petoukhov, S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2014: Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. Proc. Natl. Acad. Sci. USA, 111, 12 33112 336, https://doi.org/10.1073/pnas.1412797111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuell, C., and B. Bonsal, 2009: An assessment of climatological synoptic typing by principal component analysis and k-means clustering. Theor. Appl. Climatol., 98, 361373, https://doi.org/10.1007/s00704-009-0119-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déry, S. J., M. A. Hernández-Henríquez, J. E. Burford, and E. F. Wood, 2009: Observational evidence of an intensifying hydrological cycle in northern Canada. Geophys. Res. Lett., 36, L13402, https://doi.org/10.1029/2009GL038852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Destouni, G., F. Jaramillo, and C. Prieto, 2013: Hydroclimatic shifts driven by human water use for food and energy production. Nat. Climate Change, 3, 213217, https://doi.org/10.1038/nclimate1719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dey, B., 1982: Nature and possible causes of droughts on the Canadian Prairies—Case studies. Int. J. Climatol., 2, 233249, https://doi.org/10.1002/joc.3370020303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, https://doi.org/10.1029/2005GL023272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eum, H.-I., Y. Dibike, T. Prowse, and B. Bonsal, 2014: Inter-comparison of high-resolution gridded climate data sets and their implication on hydrological model simulation over the Athabasca Watershed, Canada. Hydrol. Processes, 28, 42504271, https://doi.org/10.1002/hyp.10236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finnis, J., J. J. Cassano, M. Holland, M. C. Serreze, and P. Uotila, 2009: Synoptically forced hydroclimatology of major Arctic watersheds in general circulation models; Part 2: Eurasian watersheds. Int. J. Climatol., 29, 12441261, https://doi.org/10.1002/joc.1769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girardin, M.-P., J. C. Tardif, M. D. Flannigan, and Y. Bergeron, 2006: Synoptic-scale atmospheric circulation and boreal Canada summer drought variability of the past three centuries. J. Climate, 19, 19221947, https://doi.org/10.1175/JCLI3716.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamed, K. H., 2008: Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. J. Hydrol., 349, 350363, https://doi.org/10.1016/j.jhydrol.2007.11.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamed, K. H., and A. R. Rao, 1998: A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol., 204, 182196, https://doi.org/10.1016/S0022-1694(97)00125-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewitson, B. C., and R. G. Crane, 2002: Self-organizing maps: Applications to synoptic climatology. Climate Res., 22, 1326, https://doi.org/10.3354/cr022013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, M. E., and J. J. Cassano, 2009: Impacts of reduced sea ice on winter Arctic atmospheric circulation, precipitation, and temperature. J. Geophys. Res., 114, D16107, https://doi.org/10.1029/2009JD011884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Academic Press, 535 pp.

  • Hopkinson, R. F., D. W. McKenney, E. J. Milewska, M. F. Hutchinson, P. Papadopol, and L. A. Vincent, 2011: Impact of aligning climatological day on gridding daily maximum–minimum temperature and precipitation over Canada. J. Appl. Meteor. Climatol., 50, 16541665, https://doi.org/10.1175/2011JAMC2684.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, D. E., N. C. Johnson, D. Singh, D. L. Swain, B. Rajaratnam, and N. S. Diffenbaugh, 2015: Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 522, 465469, https://doi.org/10.1038/nature14550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319, 8395, https://doi.org/10.1016/j.jhydrol.2005.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchinson, M. F., D. W. McKenney, K. Lawrence, J. H. Pedlar, R. F. Hopkinson, E. Milewska, and P. Papadopol, 2009: Development and testing of Canada-wide interpolated spatial models of daily minimum–maximum temperature and precipitation for 1961–2003. J. Appl. Meteor. Climatol., 48, 725741, https://doi.org/10.1175/2008JAMC1979.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.

  • Islam, S., S. J. Déry, and A. T. Werner, 2017: Future climate change impacts on snow and water resources of the Fraser River Basin, British Columbia. J. Hydrometeor., 18, 473496, https://doi.org/10.1175/JHM-D-16-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jézéquel, A., J. Cattiaux, P. Naveau, S. Radanovics, A. Ribes, R. Vautard, M. Vrac, and P. Yiou, 2018: Trends of atmospheric circulation during singular hot days in Europe. Environ. Res. Lett., 13, 054007, https://doi.org/10.1088/1748-9326/aab5da.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., 2013: How many ENSO flavors can we distinguish? J. Climate, 26, 48164827, https://doi.org/10.1175/JCLI-D-12-00649.1.

  • Johnson, N. C., S. B. Feldstein, and B. Tremblay, 2008: The continuum of Northern Hemisphere teleconnection patterns and a description of the NAO shift with the use of self-organizing maps. J. Climate, 21, 63546371, https://doi.org/10.1175/2008JCLI2380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. Charles Griffin, 202 pp.

  • Kingma, B., and W. van Marken Lichtenbelt, 2015: Energy consumption in buildings and female thermal demand. Nat. Climate Change, 5, 10541056, https://doi.org/10.1038/nclimate2741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and et al. , 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/JMSJ.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 1998: The self-organizing map. Neurocomputing, 21, 16, https://doi.org/10.1016/S0925-2312(98)00030-7.

  • Kunkel, K. E., K. Andsager, and D. R. Easterling, 1999: Long-term trends in extreme precipitation events over the conterminous United States and Canada. J. Climate, 12, 25152572, https://doi.org/10.1175/1520-0442(1999)012<2515:LTTIEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., and J. R. Gyakum, 1998: Moisture transport diagnosis of a wintertime precipitation event in the Mackenzie River Basin. Mon. Wea. Rev., 126, 668692, https://doi.org/10.1175/1520-0493(1998)126<0668:MTDOAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., and S. B. Feldstein, 2013: Detecting ozone- and greenhouse gas–driven wind trends with observational data. Science, 339, 563567, https://doi.org/10.1126/science.1225154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511514, https://doi.org/10.1038/ngeo262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. van Meijgaard, 2010: Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ. Res. Lett., 5, 025208, https://doi.org/10.1088/1748-9326/5/2/025208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X. Z., and et al. , 2017: Determining climate effects on US total agricultural productivity. Proc. Natl. Acad. Sci. USA, 114, E2285E2292, https://doi.org/10.1073/pnas.1615922114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. A. Barnes, 2015: Extreme moisture transport into the Arctic linked to Rossby wave breaking. J. Geophys. Res. Atmos., 120, 37743788, https://doi.org/10.1002/2014JD022796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., and R. E. Stewart, 2003: Water vapor fluxes over the Saskatchewan River Basin. J. Hydrometeor., 4, 944959, https://doi.org/10.1175/1525-7541(2003)004<0944:WVFOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., R. E. Stewart, and K. K. Szeto, 2004: Moisture transport and other hydrometeorological features associated with the severe 2000/01 drought over the western and central Canadian Prairies. J. Climate, 17, 305319, https://doi.org/10.1175/1520-0442(2004)017<0305:MTAOHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. H. Weisberg, and C. N. K. Mooers, 2006: Performance evaluation of the self-organizing map for feature extraction. J. Geophys. Res., 111, C05018, https://doi.org/10.1029/2005JC003117.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., B. R. Lintner, and A. Sweeney, 2017: Characterizing large-scale meteorological patterns and associated temperature and precipitation extremes over the northwestern United States using self-organizing maps. J. Climate, 30, 28292847, https://doi.org/10.1175/JCLI-D-16-0670.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Mazdiyasni, O., and et al. , 2017: Increasing probability of mortality during Indian heat waves. Sci. Adv., 3, e1700066, https://doi.org/10.1126/sciadv.1700066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekis, É., and L. A. Vincent, 2011: An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmos.–Ocean, 49, 163177, https://doi.org/10.1080/07055900.2011.583910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and et al. , 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mioduszewski, J. R., A. K. Rennermalm, A. Hammann, M. Tedesco, E. U. Noble, J. C. Stroeve, and T. L. Mote, 2016: Atmospheric drivers of Greenland surface melt revealed by self-organizing maps. J. Geophysi. Res. Atmos., 121, 50955114, https://doi.org/10.1002/2015JD024550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newton, B. W., T. D. Prowse, and B. R. Bonsal, 2014a: Evaluating the distribution of water resources in western Canada using synoptic climatology and selected teleconnections. Part 1: Winter season. Hydrol. Processes, 28, 42194234, https://doi.org/10.1002/hyp.10233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newton, B. W., T. D. Prowse, and B. R. Bonsal, 2014b: Evaluating the distribution of water resources in western Canada using synoptic climatology and selected teleconnections. Part 2: Summer season. Hydrol. Processes, 28, 42354249, https://doi.org/10.1002/hyp.10235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oudin Åström, D., B. Forsberg, K. L. Ebi, and J. Rocklöv, 2013: Attributing mortality from extreme temperatures to climate change in Stockholm, Sweden. Nat. Climate Change, 3, 10501054, https://doi.org/10.1038/nclimate2022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panthou, G., A. Mailhot, E. Laurence, and G. Talbot, 2014: Relationship between surface temperature and extreme rainfalls: A multi-time-scale and event-based analysis. J. Hydrometeor., 15, 19992011, https://doi.org/10.1175/JHM-D-14-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, C., and et al. , 2011: A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat. Climate Change, 1, 467471, https://doi.org/10.1038/nclimate1293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penny, D., and et al. , 2018: The demise of Angkor: Systemic vulnerability of urban infrastructure to climatic variations. Sci. Adv., 4, eaau4029, https://doi.org/10.1126/SCIADV.AAU4029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2013: Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc. Natl. Acad. Sci. USA, 110, 53365341, https://doi.org/10.1073/pnas.1222000110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radić, V., A. J. Cannon, B. Menounos, and N. Gi, 2015: Future changes in autumn atmospheric river events in British Columbia, Canada, as projected by CMIP5 global climate models. J. Geophys. Res. Atmos., 120, 92799302, https://doi.org/10.1002/2015JD023279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reusch, D. B., 2010: Nonlinear climatology and paleoclimatology: Capturing patterns of variability and change with self-organizing maps. Phys. Chem. Earth, 35, 329340, https://doi.org/10.1016/j.pce.2009.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reusch, D. B., R. B. Alley, and B. C. Hewitson, 2005: Relative performance of self-organizing maps and principal component analysis in pattern extraction from synthetic climatological data. Polar Geogr., 29, 188212, https://doi.org/10.1080/789610199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romolo, L., T. D. Prowse, D. Blair, B. R. Bonsal, and L. W. Martz, 2006: The synoptic climate controls on hydrology in the upper reaches of the Peace River Basin. Part I: Snow accumulation. Hydrol. Processes, 20, 40974111, https://doi.org/10.1002/hyp.6421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahai, A. K., R. Chattopadhyay, S. Joseph, S. Abhilash, N. Borah, and B. N. Goswami, 2013: A new method to compute the principal components from self-organizing maps: An application to monsoon intraseasonal oscillations. Int. J. Climatol., 34, 29252939, https://doi.org/10.1002/JOC.3885.

    • Search Google Scholar
    • Export Citation
  • Saunders, I., and J. Byrne, 1996: Generating regional precipitation from observed and GCM synoptic-scale pressure fields, southern Alberta, Canada. Climate Res., 6, 237249, https://doi.org/10.3354/cr006237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2014: Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Climate Change, 4, 577582, https://doi.org/10.1038/nclimate2268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and L. Vogel, 2012: Does global warming cause intensified interannual hydroclimate variability? J. Climate, 25, 33553372, https://doi.org/10.1175/JCLI-D-11-00363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and et al. , 2000: Observational evidence of recent change in the northern high-latitude environment. Climatic Change, 46, 159207, https://doi.org/10.1023/A:1005504031923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shabbar, A., B. R. Bonsal, and K. Szeto, 2011: Atmospheric and oceanic variability associated with growing season droughts and pluvials on the Canadian Prairies. Atmos.–Ocean, 49, 339355, https://doi.org/10.1080/07055900.2011.564908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., and C. C. Lee, 2011: The self-organizing map in synoptic climatological research. Prog. Phys. Geogr., 35, 109119, https://doi.org/10.1177/0309133310397582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skific, N., J. A. Francis, and J. J. Cassano, 2009: Attribution of projected changes in atmospheric moisture transport in the Arctic: A self-organizing map perspective. J. Climate, 22, 41354153, https://doi.org/10.1175/2009JCLI2645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnov, V. V., and G. W. K. Moore, 2001: Short-term and seasonal variability of the atmospheric water vapor transport through the Mackenzie River Basin. J. Hydrometeor., 2, 441452, https://doi.org/10.1175/1525-7541(2001)002<0441:STASVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stahl, K., R. D. Moore, and I. G. McKendry, 2006: The role of synoptic-scale circulation in the linkage between large-scale ocean–atmosphere indices and winter surface climate in British Columbia, Canada. Int. J. Climatol., 26, 541560, https://doi.org/10.1002/joc.1268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szeto, K. K., 2002: Moisture recycling over the Mackenzie basin. Atmos.–Ocean, 40, 181197, https://doi.org/10.3137/ao.400207.

  • Tan, X., and T. Y. Gan, 2015: Nonstationary analysis of annual maximum streamflow of Canada. J. Climate, 28, 17881805, https://doi.org/10.1175/JCLI-D-14-00538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, X., and T. Y. Gan, 2017: Non-stationary analysis of the frequency and intensity of heavy precipitation over Canada and their relations to large-scale climate patterns. Climate Dyn., 48, 29833001, https://doi.org/10.1007/s00382-016-3246-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, X., T. Y. Gan, and D. Shao, 2017: Effects of persistence and large-scale climate anomalies on trends and change points in extreme precipitation of Canada. J. Hydrol., 550, 453465, https://doi.org/10.1016/j.jhydrol.2017.05.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, X., T. Y. Gan, and D. E. Horton, 2018: Projected timing of perceivable changes in climate extremes for terrestrial and marine ecosystems. Global Change Biol., 24, 46964708, https://doi.org/10.1111/gcb.14329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, X., T. Y. Gan, and Y. D. Chen, 2019a: Synoptic moisture pathways associated with mean and extreme precipitation over Canada for summer and fall. Climate Dyn., 52, 29592979, https://doi.org/10.1007/s00382-018-4300-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, X., T. Y. Gan, and Y. D. Chen, 2019b: Synoptic moisture pathways associated with mean and extreme precipitation over Canada for winter and spring. Climate Dyn., https://doi.org/10.1007/S00382-019-04649-9.

    • Search Google Scholar
    • Export Citation
  • Tan, X., S. Chen, T. Y. Gan, B. Liu, and X. Chen, 2019c: Dynamic and thermodynamic changes conducive to the increased occurrence of extreme spring fire weather over western Canada under possible anthropogenic climate change. Agric. For. Meteor., 265, 269279, https://doi.org/10.1016/j.agrformet.2018.11.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theil, H., 1950: A rank-invariant method of linear and polynomial regression analysis. Nederl. Akad. Wetensch., 53, 386392.

  • Vicente-Serrano, S. M., and et al. , 2018: Recent changes of relative humidity: regional connection with land and ocean processes. Earth Syst. Dyn., 9, 915937, https://doi.org/10.5194/esd-9-915-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., and É. Mekis, 2006: Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. Atmos.–Ocean, 44, 177193, https://doi.org/10.3137/ao.440205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., X. Zhang, R. D. Brown, Y. Feng, E. Mekis, E. J. Milewska, H. Wan, and X. L. Wang, 2015: Observed trends in Canada’s climate and influence of low-frequency variability modes. J. Climate, 28, 45454560, https://doi.org/10.1175/JCLI-D-14-00697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., X. Zhang, É. Mekis, H. Wan, and E. J. Bush, 2018: Changes in Canada’s climate: Trends in indices based on daily temperature and precipitation data. Atmos.–Ocean, 56, 332349, https://doi.org/10.1080/07055900.2018.1514579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasko, C., and A. Sharma, 2015: Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nat. Geosci., 8, 527529, https://doi.org/10.1038/ngeo2456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: On “field significance” and the false discovery rate. J. Appl. Meteor. Climatol., 45, 11811189, https://doi.org/10.1175/JAM2404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, J. S., S. Razavi, B. R. Bonsal, H. S. Wheater, and Z. E. Asong, 2017: Inter-comparison of daily precipitation products for large-scale hydro-climatic applications over Canada. Hydrol. Earth Syst. Sci., 21, 21632185, https://doi.org/10.5194/hess-21-2163-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, D. J., J. T. Stevens, J. M. Earles, J. Moore, A. Ellis, A. L. Jirka, and A. M. Latimer, 2017: Long-term climate and competition explain forest mortality patterns under extreme drought. Ecol. Lett., 20, 7886, https://doi.org/10.1111/ele.12711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, S., P. Pilon, B. Phinney, and G. Cavadias, 2002: The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Processes, 16, 18071829, https://doi.org/10.1002/hyp.1095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., W. D. Hogg, and É. Mekis, 2001a: Spatial and temporal characteristics of heavy precipitation events over Canada. J. Climate, 14, 19231936, https://doi.org/10.1175/1520-0442(2001)014<1923:SATCOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., K. D. Harvey, W. D. Hogg, and T. R. Yuzyk, 2001b: Trends in Canadian streamflow. Water Resour. Res., 37, 987998, https://doi.org/10.1029/2000WR900357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. Wang, F. W. Zwiers, and P. Ya. Groisman, 2010: The influence of large-scale climate variability on winter maximum daily precipitation over North America. J. Climate, 23, 29022915, https://doi.org/10.1175/2010JCLI3249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., and H. von Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336351, https://doi.org/10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 131 131 31
PDF Downloads 141 141 38

Trends in Persistent Seasonal-Scale Atmospheric Circulation Patterns Responsible for Seasonal Precipitation Totals and Occurrences of Precipitation Extremes over Canada

View More View Less
  • 1 Department of Water Resources and Environment, School of Civil Engineering, Sun Yat-sen University, Guangzhou, China, and Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada, and Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, and Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong High Education Institute, Sun Yat-sen University, Guangzhou, China
  • | 2 Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
  • | 3 Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada, and State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
  • | 4 Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois
  • | 5 Department of Water Resources and Environment, School of Civil Engineering, and Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, and Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong High Education Institute, Sun Yat-sen University, Guangzhou, China
© Get Permissions
Restricted access

Abstract

Both large-scale atmospheric circulation and moisture content in the atmosphere govern regional precipitation. We partition recent changes in mean, heavy, and extreme precipitation for all seasons over Canada to changes in synoptic circulation patterns (dynamic changes) and in atmospheric moisture conditions (thermodynamic changes) using 500-hPa geopotential height and precipitation data over 1979–2014. Using the self-organizing map (SOM) cluster analysis, we identify statistically significant trends in occurrences of certain synoptic circulation patterns over the Canadian landmass, which have dynamically contributed to observed changes in precipitation totals and occurrence of heavy and extreme precipitation events over Canada. Occurrences of circulation patterns such as westerlies and ridges over western North America and the North Pacific have considerably affected regional precipitation over Canada. Precipitation intensity and occurrences of precipitation extremes associated with each SOM circulation pattern also showed statistically significant trends resulting from thermodynamic changes in the atmospheric moisture supply for precipitation events. A partition analysis based on the thermodynamic–dynamic partition method indicates that most (~90%) changes in mean and extreme precipitation over Canada resulted from changes in precipitation regimes occurring under each synoptic circulation pattern (thermodynamic changes). Other regional precipitation changes resulted from changes in occurrences of synoptic circulation patterns (dynamic changes). Because of the high spatial variability of precipitation response to changes in thermodynamic and dynamic conditions, dynamic contributions could offset thermodynamic contributions to precipitation changes over some regions if thermodynamic and dynamic contributions are in opposition to each other (negative or positive), which would result in minimal changes in precipitation intensity and occurrences of heavy and extreme precipitation events.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0408.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuezhi Tan, tanxuezhi@mail.sysu.edu.cn

Abstract

Both large-scale atmospheric circulation and moisture content in the atmosphere govern regional precipitation. We partition recent changes in mean, heavy, and extreme precipitation for all seasons over Canada to changes in synoptic circulation patterns (dynamic changes) and in atmospheric moisture conditions (thermodynamic changes) using 500-hPa geopotential height and precipitation data over 1979–2014. Using the self-organizing map (SOM) cluster analysis, we identify statistically significant trends in occurrences of certain synoptic circulation patterns over the Canadian landmass, which have dynamically contributed to observed changes in precipitation totals and occurrence of heavy and extreme precipitation events over Canada. Occurrences of circulation patterns such as westerlies and ridges over western North America and the North Pacific have considerably affected regional precipitation over Canada. Precipitation intensity and occurrences of precipitation extremes associated with each SOM circulation pattern also showed statistically significant trends resulting from thermodynamic changes in the atmospheric moisture supply for precipitation events. A partition analysis based on the thermodynamic–dynamic partition method indicates that most (~90%) changes in mean and extreme precipitation over Canada resulted from changes in precipitation regimes occurring under each synoptic circulation pattern (thermodynamic changes). Other regional precipitation changes resulted from changes in occurrences of synoptic circulation patterns (dynamic changes). Because of the high spatial variability of precipitation response to changes in thermodynamic and dynamic conditions, dynamic contributions could offset thermodynamic contributions to precipitation changes over some regions if thermodynamic and dynamic contributions are in opposition to each other (negative or positive), which would result in minimal changes in precipitation intensity and occurrences of heavy and extreme precipitation events.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0408.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuezhi Tan, tanxuezhi@mail.sysu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 8.46 MB)
Save