Potential Predictability of North China Summer Drought

Lixia Zhang State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Lixia Zhang in
Current site
Google Scholar
PubMed
Close
,
Tianjun Zhou State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Tianjun Zhou in
Current site
Google Scholar
PubMed
Close
,
Peili Wu Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Peili Wu in
Current site
Google Scholar
PubMed
Close
, and
Xiaolong Chen State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Xiaolong Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Any skillful prediction is of great benefit to North China, a region that is densely populated and greatly impacted by droughts. This paper reports potential predictability of North China summer drought 1 month ahead based on hindcasts for 1961–2005 from the “ENSEMBLES” project. Correlation scores of the standardized precipitation–evapotranspiration index and standardized precipitation index reach 0.49 and 0.39, respectively. The lower-level northwestern Pacific cyclonic circulation anomaly (NWPCCA) and East Asian upper-tropospheric temperature (UTT) cooling are the crucial circulations with regard to summer drought. Two sources of predictability are identified: 1) Pacific–Japan and Silk Road teleconnections forced by well-established eastern Pacific Ocean El Niño sea surface temperature anomalies (SSTA) in summer, when the two key circulations are both well predicted because of a good prediction of enhanced equatorial central Pacific (CP) rainfall and Indian rainfall deficit, and 2) the subtropical atmosphere–ocean coupling associated with CP El Niño developing, when the skill mainly arises from the reasonable prediction of NWPCCA. In observations, the NWPCCA persists from the preceding spring to summer through a wind–evaporation–SST feedback related to the Pacific meridional mode (PMM). In predictions, the persistence of the NWPCCA is mainly forced by the enhanced convection over the subtropical central North Pacific due to the persistence of the PMM-related meridional SSTA gradient over the CP. This predicted SSTA suppresses the equatorial Pacific rainfall, contributing to low prediction skill for the East Asian UTT cooling. This study demonstrates the importance of extratropical signals from the preceding season in North China summer drought prediction.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lixia Zhang, lixiazhang@mail.iap.ac.cn

Abstract

Any skillful prediction is of great benefit to North China, a region that is densely populated and greatly impacted by droughts. This paper reports potential predictability of North China summer drought 1 month ahead based on hindcasts for 1961–2005 from the “ENSEMBLES” project. Correlation scores of the standardized precipitation–evapotranspiration index and standardized precipitation index reach 0.49 and 0.39, respectively. The lower-level northwestern Pacific cyclonic circulation anomaly (NWPCCA) and East Asian upper-tropospheric temperature (UTT) cooling are the crucial circulations with regard to summer drought. Two sources of predictability are identified: 1) Pacific–Japan and Silk Road teleconnections forced by well-established eastern Pacific Ocean El Niño sea surface temperature anomalies (SSTA) in summer, when the two key circulations are both well predicted because of a good prediction of enhanced equatorial central Pacific (CP) rainfall and Indian rainfall deficit, and 2) the subtropical atmosphere–ocean coupling associated with CP El Niño developing, when the skill mainly arises from the reasonable prediction of NWPCCA. In observations, the NWPCCA persists from the preceding spring to summer through a wind–evaporation–SST feedback related to the Pacific meridional mode (PMM). In predictions, the persistence of the NWPCCA is mainly forced by the enhanced convection over the subtropical central North Pacific due to the persistence of the PMM-related meridional SSTA gradient over the CP. This predicted SSTA suppresses the equatorial Pacific rainfall, contributing to low prediction skill for the East Asian UTT cooling. This study demonstrates the importance of extratropical signals from the preceding season in North China summer drought prediction.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lixia Zhang, lixiazhang@mail.iap.ac.cn
Save
  • Alexander, M., D. Vimont, P. Chang, and J. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 28852901, https://doi.org/10.1175/2010JCLI3205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chattopadhyay, R., R. Phani, C. T. Sabeerali, A. R. Dhakate, K. D. Salunke, S. Mahapatra, A. Suryachandra Rao, and B. N. Goswami, 2015: Influence of extratropical sea-surface temperature on the Indian summer monsoon: An unexplored source of seasonal predictability. Quart. J. Roy. Meteor. Soc., 141, 27602775, https://doi.org/10.1002/qj.2562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J. Tu, and J. Yu, 2003: Interannual variability of the western North Pacific summer monsoon: Differences between ENSO and non-ENSO years. J. Climate, 16, 22752287, https://doi.org/10.1175/2761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833503, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., B. Wang, J. Wallace, and G. Branstator, 2011: Tropical–extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24, 18781896, https://doi.org/10.1175/2011JCLI3621.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutra, E., and Coauthors, 2014: Global meteorological drought—Part 2: Seasonal forecasts. Hydrol. Earth Syst. Sci., 18, 26692678, https://doi.org/10.5194/hess-18-2669-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, https://doi.org/10.1256/qj.01.211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., H. Wang, and D. Chen, 2015: The capability of ENSEMBLES models in predicting the principal modes of pan-Asian monsoon precipitation. J. Climate, 28, 84868510, https://doi.org/10.1175/JCLI-D-15-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hao, Z., A. AghaKouchak, N. Nakhjiri, and A. Farahmand, 2014: Global Integrated Drought Monitoring and Prediction System. Sci. Data, 1, 140001, https://doi.org/10.1038/sdata.2014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., and T. Zhou, 2014: The two interannual variability modes of the western North Pacific subtropical high simulated by 28 CMIP5-AMIP models. Climate Dyn., 43, 24552469, https://doi.org/10.1007/s00382-014-2068-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., and F. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243256, https://doi.org/10.2151/jmsj1965.70.1B_243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437470, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I. S., and Coauthors, 2002: Intercomparison of GCM simulated anomalies associated with the 1997/98 El Niño. J. Climate, 15, 27912805, https://doi.org/10.1175/1520-0442(2002)015<2791:IOAGSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H. M., P. J. Webster, J. A. Curry, and V. E. Toma, 2012: Asian summer monsoon prediction in ECMWF System 4 and NCEP CFSv2 retrospective seasonal forecasts. Climate Dyn., 39, 29752991, https://doi.org/10.1007/s00382-012-1470-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2010: Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific–Japan pattern. J. Climate, 23, 50855108, https://doi.org/10.1175/2010JCLI3413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., J.-Y. Lee, K.-M. Kim, and I.-S. Kang, 2004: The North Pacific as a regulator of summertime climate over Eurasia and North America. J. Climate, 17, 819833, https://doi.org/10.1175/1520-0442(2004)017<0819:TNPAAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., and Z. D. Lin, 2015: Predictability of the summer East Asian upper-tropospheric westerly jet in ENSEMBLES multi-model forecasts. Adv. Atmos. Sci., 32, 16691682, https://doi.org/10.1007/s00376-015-5057-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., R. Lu, and B. Dong, 2012: Predictability of the western North Pacific summer climate demonstrated by the coupled models of ENSEMBLES. Climate Dyn., 39, 329346, https://doi.org/10.1007/s00382-011-1274-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., and Coauthors, 2016: Skillful seasonal prediction of Yangtze river valley summer rainfall. Environ. Res. Lett., 11, 094002, https://doi.org/10.1088/1748-9326/11/9/094002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, L., W. Tang, Z. Lin, and E. Wood, 2013: Evaluation of summer temperature and precipitation predictions from NCEP CFSv2 retrospective forecast over China. Climate Dyn., 41, 22132230, https://doi.org/10.1007/s00382-013-1927-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, F., X. Yuan, and A. Ye, 2015: Seasonal drought predictability and forecast skill over China. J. Geophys. Res., 120, 82648275, https://doi.org/10.1002/2015JD023185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Z., and C. Fu, 2006: Some evidence of drying trend over northern China from 1951 to 2004. Chin. Sci. Bull., 51, 29132925, https://doi.org/10.1007/s11434-006-2159-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.

  • Mo, K., and B. Lyon, 2015: Global meteorological drought prediction using the North American Multi-Model Ensemble. J. Hydrometeor., 16, 14091424, https://doi.org/10.1175/JHM-D-14-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 38, 5594, https://doi.org/10.2307/210739.

  • Turco, M., A. Ceglar, C. Prodhomme, A. Soret, A. Toreti, and J. Doblas-Reyes Francisco, 2017: Summer drought predictability over Europe: Empirical versus dynamical forecasts. Environ. Res. Lett., 12, 084006, https://doi.org/10.1088/1748-9326/aa7859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., S. Beguería, and J. I. Lopez-Moreno, 2010: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 16961718, https://doi.org/10.1175/2009JCLI2909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D., D. Battisti, and A. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 39233926, https://doi.org/10.1029/2001GL013435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D., D. Battisti, and A. Hirst, 2003a: The seasonal footprinting mechanism in the CSIRO general circulation models. J. Climate, 16, 26532667, https://doi.org/10.1175/1520-0442(2003)016<2653:TSFMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D., J. Wallace, and D. Battisti, 2003b: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D., M. A. Alexander, and A. Fontaine, 2009: Midlatitude excitation of tropical variability in the Pacific: The role of thermodynamic coupling and seasonality. J. Climate, 22, 518534, https://doi.org/10.1175/2008JCLI2220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33, 93117, https://doi.org/ 10.1007/s00382-008-0460-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and S. He, 2015: The North China/northeastern Asia severe summer drought in 2014. J. Climate, 28, 66676681, https://doi.org/10.1175/JCLI-D-15-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., X. Yuan, and Y. Li, 2017: Does a strong El Niño imply a higher predictability of extreme drought? Sci. Rep., 7, 40741, https://doi.org/10.1038/srep40741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, https://doi.org/10.1002/qj.49711850705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., and Coauthors, 2009: ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions—Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys. Res. Lett., 36, L21711, https://doi.org/10.1029/2009GL040896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, N., Z. Liu, and L. Li, 2018: Direct ENSO impact on East Asian summer precipitation in the developing summer. Climate Dyn., 4, 117, https://doi.org/10.1007/s00382-018-4545-0.

    • Search Google Scholar
    • Export Citation
  • Wu, J., and X. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets (in Chinese). Chin. J. Geophys., 56, 11021111.

    • Search Google Scholar
    • Export Citation
  • Wu, R., Z. Hu, and B. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, https://doi.org/10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, S., L. Wu, Q. Liu, and S.-P. Xie, 2010: Development processes of the tropical Pacific meridional mode. Adv. Atmos. Sci., 27, 9599, https://doi.org/10.1007/s00376-009-8067-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., Z. Xiao, J. Yang, and H. Liu, 2013: Characteristics of clustering extreme drought events in China during 1961–2010. Acta Meteor. Sin., 27, 186198, https://doi.org/10.1007/s13351-013-0204-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., Z. Zhang, V. E. Kousky, R. W. Higgins, S.-H. Yoo, J. Liang, and Y. Fan, 2008: Simulations and seasonal prediction of the Asian summer monsoon in the NCEP Climate Forecast System. J. Climate, 21, 37553775, https://doi.org/10.1175/2008JCLI1961.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S. W., X. Wang, C. Wang, and B. Dewitte, 2015: On the relationship between the North Pacific climate variability and the central Pacific El Niño. J. Climate, 28, 663677, https://doi.org/10.1175/JCLI-D-14-00137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., Y. Zou, S. T. Kim, and T. Lee, 2012: The changing impact of El Niño on US winter temperatures. Geophys. Res. Lett., 39, L15702, https://doi.org/10.1029/2012GL052483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. Zhou, 2012: The interannual variability of summer upper-tropospheric temperature over East Asia. J. Climate, 25, 65396553, https://doi.org/10.1175/JCLI-D-11-00583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. Zhou, 2015: Drought over East Asia: A review. J. Climate, 28, 33753399, https://doi.org/10.1175/JCLI-D-14-00259.1.

  • Zhang, L., P. Wu, T. Zhou, and C. Xiao, 2018: ENSO transition from La Niña to El Niño drives prolonged spring–summer drought over North China. J. Climate, 31, 35093523, https://doi.org/10.1175/JCLI-D-17-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., D. Gong, J. Li, and B. Li, 2009: Detecting and understanding the multi-decadal variability of the East Asian summer monsoon—Recent progress and state of affairs. Meteor. Z., 18, 455467, https://doi.org/10.1127/0941-2948/2009/0396.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 491 164 20
PDF Downloads 348 70 7