• Adler, R. F., and et al. , 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., and B. Wang, 2001: Mechanisms of locking the El Niño and La Niña mature phases to boreal winter. J. Climate, 14, 21642176, https://doi.org/10.1175/1520-0442(2001)014<2164:MOLOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., P. Liu, and S.-P. Xie, 2005: Southwest Indian Ocean SST variability: Its local effect and remote influence on Asian monsoons. J. Climate, 18, 41504167, https://doi.org/10.1175/JCLI3533.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., Z. Wen, R. Wu, Z. Chen, and P. Zhao, 2014: Interdecadal changes in the relationship between southern China winter–spring precipitation and ENSO. Climate Dyn., 43, 13271338, https://doi.org/10.1007/s00382-013-1947-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., 2002: Impacts of El Niño and La Niña on the cycle of the East Asian winter and summer monsoon (in Chinese). Chin. J. Atmos. Sci., 26, 595610.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., Z. Wen, R. Wu, X. Lin, and J. Wang, 2016: Relative importance of tropical SST anomalies in maintaining the western North Pacific anomalous anticyclone during El Niño to La Niña transition years. Climate Dyn., 46, 10271041, https://doi.org/10.1007/s00382-015-2630-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Z. Wen, R. Wu, and Y. Du, 2017: Roles of tropical SST anomalies in modulating the western north Pacific anomalous cyclone during strong La Niña decaying years. Climate Dyn., 49, 633647, https://doi.org/10.1007/s00382-016-3364-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Y. Du, Z. Wen, R. Wu, and C. Wang, 2018: Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: Role of southeast tropical Indian Ocean warming. Climate Dyn., 50, 47074719, https://doi.org/10.1007/s00382-017-3899-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., S.-P. Xie, G. Huang, and K. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced north Indian Ocean warming. J. Climate, 22, 20232038, https://doi.org/10.1175/2008JCLI2590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., L. Yang, and S.-P. Xie, 2011: Tropical Indian Ocean influence on northwest Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24, 315322, https://doi.org/10.1175/2010JCLI3890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galanti, E., and E. Tziperman, 2000: ENSO’s phase locking to the seasonal cycle in the fast-SST, fast-wave, and mixed-mode regimes. J. Atmos. Sci., 57, 29362950, https://doi.org/10.1175/1520-0469(2000)057<2936:ESPLTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and et al. , 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Z., and R. Wu, 2014: Indo-Pacific remote forcing in summer rainfall variability over the South China Sea. Climate Dyn., 42, 23232337, https://doi.org/10.1007/s00382-014-2123-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Z., R. Wu, and W. Wang, 2016: Signals of the South China Sea summer rainfall variability in the Indian Ocean. Climate Dyn., 46, 31813195, https://doi.org/10.1007/s00382-015-2760-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, and R. Huang, 2011: The impact of tropical Indian Ocean variability on summer surface air temperature in China. J. Climate, 24, 53655377, https://doi.org/10.1175/2011JCLI4152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, X.-T. Zheng, S.-P. Xie, X. Qu, Y. Du, and L. Liu, 2014: Interdecadal variations in ENSO influences on northwest Pacific–East Asian early summertime climate simulated in CMIP5 models. J. Climate, 27, 59825998, https://doi.org/10.1175/JCLI-D-13-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, W., R. Wu, and Y. Liu, 2014: Relation of the South China Sea precipitation variability to tropical Indo-Pacific SST anomalies during spring-to-summer transition. J. Climate, 27, 54515467, https://doi.org/10.1175/JCLI-D-14-00089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. L. Kinter, 2002: Interannual variability in the tropical Indian Ocean. J. Geophys. Res., 107, 3199, https://doi.org/10.1029/2001JC001278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J., J. Hack, D. Shea, J. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., C. de Boyer Montégut, J.-J. Luo, S. K. Behera, S. Masson, and T. Yamagata, 2008: The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J. Climate, 21, 56035623, https://doi.org/10.1175/2008JCLI2158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., and et al. , 2002: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Climate Dyn., 19, 383395, https://doi.org/10.1007/s00382-002-0245-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., S.-P. Xie, N.-C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 75747579, https://doi.org/10.1073/pnas.1215582110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., T. Li, S.-I. An, I.-S. Kang, J.-J. Luo, S. Masson, and T. Yamagata, 2006: Role of the ENSO–Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys. Res. Lett., 33, L09710, https://doi.org/10.1029/2005GL024916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45, RG2005, https://doi.org/10.1029/2005RG000172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moron, V., A. Lucero, F. Hilario, B. Lyon, A. W. Robertson, and D. DeWitt, 2009: Spatio-temporal variability and predictability of summer monsoon onset over the Philippines. Climate Dyn., 33, 11591177, https://doi.org/10.1007/s00382-008-0520-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 51505168, https://doi.org/10.1175/JCLI-D-12-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen-Le, D., J. Matsumoto, and T. Ngo-Duc, 2015: Onset of the rainy seasons in the eastern Indochina Peninsula. J. Climate, 28, 56455666, https://doi.org/10.1175/JCLI-D-14-00373.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843, https://doi.org/10.1175/2010JCLI3592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., and G. Huang, 2012: Impacts of tropical Indian Ocean SST on the meridional displacement of East Asian jet in boreal summer. Int. J. Climatol., 32, 20732080, https://doi.org/10.1002/joc.2378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker E. B. Horton C. K. Folland L. V. Alexander D. P. Rowell E. C. Kent A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K., D. Williamson, and F. Zwiers, 2000: The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. PCMDI Rep. 60, 28 pp., https://pcmdi.llnl.gov/report/ab60.html.

  • Tokinaga, H., and Y. Tanimoto, 2004: Seasonal transition of SST anomalies in the tropical Indian Ocean during El Niño and IOD years. J. Meteor. Soc. Japan, 82, 10071018, https://doi.org/10.2151/jmsj.2004.1007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tziperman, E., S. E. Zebiak, and M. A. Cane, 1997: Mechanisms of seasonal–ENSO interaction. J. Atmos. Sci., 54, 6171, https://doi.org/10.1175/1520-0469(1997)054<0061:MOSEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian-Australian monsoon variation. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., LinHo, Y. Zhang, and M.-M. Lu, 2004: Definition of South China Sea monsoon onset and commencement of the East Asia summer monsoon. J. Climate, 17, 699710, https://doi.org/10.1175/2932.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., R. H. Weisberg, J. Virmani, 1999: Western Pacific interannual variability associated with the El Niño-Southern Oscillation. J. Geophys. Res., 104, 51315149, https://doi.org/10.1029/1998JC900090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and F. Jin, 2002: Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys. Res. Lett., 29, 1478, https://doi.org/10.1029/2001GL014318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., and C. Wang, 1997: A western Pacific oscillator paradigm for the El Niño–Southern Oscillation. Geophys. Res. Lett., 24, 779782, https://doi.org/10.1029/97GL00689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 29742986, https://doi.org/10.1175/2010JCLI3300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and S.-W. Yeh, 2010: A further study of the tropical Indian Ocean asymmetric mode in boreal spring. J. Geophys. Res., 115, D08101, https://doi.org/10.1029/2009JD012999.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and W. Hu, 2015: Air–sea relationship associated with precipitation anomaly changes and mean precipitation anomaly over the South China Sea and the Arabian Sea during the spring to summer transition. J. Climate, 28, 71617181, https://doi.org/10.1175/JCLI-D-15-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Z.-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, https://doi.org/10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., B. P. Kirtman, and V. Krishnamurthy, 2008: An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J. Geophys. Res., 113, D05104, https://doi.org/10.1029/2007JD009316.

    • Search Google Scholar
    • Export Citation
  • Wu, R., S. Yang, Z. Wen, G. Huang, and K. Hu, 2012: Interdecadal change in the relationship of southern China summer rainfall with tropical Indo-Pacific SST. Theor. Appl. Climatol., 108, 119133, https://doi.org/10.1007/s00704-011-0519-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., G. Huang, Z. Du, and K. Hu, 2014: Cross-season relation of the South China Sea precipitation variability between winter and summer. Climate Dyn., 43, 193207, https://doi.org/10.1007/s00382-013-1820-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y.-K., C.-C. Hong, and C.-T. Chen, 2018: Distinct effects of the two strong El Niño events in 2015–2016 and 1997–1998 on the western North Pacific monsoon and tropical cyclone activity: Role of subtropical eastern North Pacific warm SSTA. J. Geophys. Res. Oceans, 123, 36033618, https://doi.org/10.1002/2018JC013798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 1996: Westward propagation of latitudinally asymmetry in a coupled ocean–atmosphere model. J. Atmos. Sci., 53, 32363250, https://doi.org/10.1175/1520-0469(1996)053<3236:WPOLAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, https://doi.org/10.3402/tellusa.v46i4.15484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of South Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., S.-P. Xie, Y. Du, and H. Tokinaga, 2015: Interdecadal difference of interannual variability characteristics of South China Sea SSTs associated with ENSO. J. Climate, 28, 71457160, https://doi.org/10.1175/JCLI-D-15-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., W. Zhou, J. C.-L. Chan, and C. Li, 2008: Impacts of the basin-wide Indian Ocean SSTA on the South China Sea summer monsoon onset. Int. J. Climatol., 28, 15791587, https://doi.org/10.1002/joc.1671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and X. Lei, 2011: Contributions of ENSO and east Indian Ocean SSTA to the interannual variability of northwest Pacific tropical cyclone frequency. J. Climate, 24, 509521, https://doi.org/10.1175/2010JCLI3808.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., and S. Yang, 2007: Seasonal phase-locking of peak events in the eastern Indian Ocean. Adv. Atmos. Sci., 24, 781798, https://doi.org/10.1007/s00376-007-0781-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ’86/87 and ’91/92 events. J. Meteor. Soc. Japan, 74, 4962, https://doi.org/10.2151/jmsj1965.74.1_49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, https://doi.org/10.1007/BF02973084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Z.-Q., S.-P. Xie, G. J. Zhang, and W. Zhou, 2018: Evaluating AMIP skill in simulating interannual variability of summer rainfall over the Indo-western Pacific. J. Climate, 31, 22532265, https://doi.org/10.1175/JCLI-D-17-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 102 102 16
PDF Downloads 98 98 30

Evolution of South Tropical Indian Ocean Warming and the Climatic Impacts Following Strong El Niño Events

View More View Less
  • 1 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • | 2 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, and University of Chinese Academy of Sciences, Beijing, China
  • | 3 Department of Atmospheric and Oceanic Sciences/Institute of Atmospheric Sciences, Fudan University, Shanghai, and Innovation Center for Climate Change, Nanjing, China
  • | 4 Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 5 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

The south tropical Indian Ocean (TIO) warms following a strong El Niño, affecting Indo-Pacific climate in early boreal summer. While much attention has been given to the southwest TIO where the mean thermocline is shallow, this study focuses on the subsequent warming in the southeast TIO, where the mean sea surface temperature (SST) is high and deep convection is strong in early summer. The southeast TIO warming induces an anomalous meridional circulation with descending (ascending) motion over the northeast (southeast) TIO. It further anchors a “C-shaped” surface wind anomaly pattern with easterlies (westerlies) in the northeast (southeast) TIO, causing a persistent northeast TIO warming via wind–evaporation–SST feedback. The southeast TIO warming lags the southwest TIO warming by about one season. Ocean wave dynamics play a key role in linking the southwest and southeast TIO warming. South of the equator, the El Niño–forced oceanic Rossby waves, which contribute to the southwest TIO warming, are reflected as eastward-propagating oceanic Kelvin waves along the equator on the western boundary. The Kelvin waves subsequently depress the thermocline and develop the southeast TIO warming.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yan Du, duyan@scsio.ac.cn

Abstract

The south tropical Indian Ocean (TIO) warms following a strong El Niño, affecting Indo-Pacific climate in early boreal summer. While much attention has been given to the southwest TIO where the mean thermocline is shallow, this study focuses on the subsequent warming in the southeast TIO, where the mean sea surface temperature (SST) is high and deep convection is strong in early summer. The southeast TIO warming induces an anomalous meridional circulation with descending (ascending) motion over the northeast (southeast) TIO. It further anchors a “C-shaped” surface wind anomaly pattern with easterlies (westerlies) in the northeast (southeast) TIO, causing a persistent northeast TIO warming via wind–evaporation–SST feedback. The southeast TIO warming lags the southwest TIO warming by about one season. Ocean wave dynamics play a key role in linking the southwest and southeast TIO warming. South of the equator, the El Niño–forced oceanic Rossby waves, which contribute to the southwest TIO warming, are reflected as eastward-propagating oceanic Kelvin waves along the equator on the western boundary. The Kelvin waves subsequently depress the thermocline and develop the southeast TIO warming.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yan Du, duyan@scsio.ac.cn
Save