• Anthes, R. A., and et al. , 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313333, https://doi.org/10.1175/BAMS-89-3-313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, X., and F. Zhang, 2013: Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J. Climate, 26, 206214, https://doi.org/10.1175/JCLI-D-12-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, X., F. Zhang, and J. Sun, 2011: Diurnal variations of warm season precipitation east of the Tibetan Plateau over China. Mon. Wea. Rev., 139, 27902810, https://doi.org/10.1175/MWR-D-11-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., S. Hagemann, and K. I. Hodges, 2004: Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109, D11111, https://doi.org/10.1029/2004JD004536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., A. Thoss, A. Dybbroe, and D. B. Michelson, 2002: Precipitation analysis using the Advanced Microwave Sounding Unit in support of nowcasting applications. Meteor. Appl., 9, 177189, https://doi.org/10.1017/S1350482702002037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bian, J. C., H. B. Chen, H. Vömel, Y. J. Duan, Y. J. Xuan, and D. R. Lu, 2011: Intercomparison of humidity and temperature sensors: GTS1, Vaisala RS80, and CFH. Adv. Atmos. Sci., 28, 139146, https://doi.org/10.1007/s00376-010-9170-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., 2013: Regional climate and variability in NASA MERRA and recent reanalyses: U.S. summertime precipitation and temperature. J. Appl. Meteor. Climatol., 52, 19391951, https://doi.org/10.1175/JAMC-D-12-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739, https://doi.org/10.1175/2011JCLI4175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, L. Takacs, A. Molod, and D. Mocko, 2017: Atmospheric water balance and variability in the MERRA-2 reanalysis. J. Climate, 30, 11771196, https://doi.org/10.1175/JCLI-D-16-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brogniez, H., and R. T. Pierrehumbert, 2007: Intercomparison of tropical tropospheric humidity in GCMs with AMSU-B water vapor data. Geophys. Res. Lett., 34, L17812, https://doi.org/10.1029/2006GL029118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and A. M. W. Yau, 2016: Northern Hemisphere winter storm track trends since 1959 derived from multiple reanalysis datasets. Climate Dyn., 47, 14351454, https://doi.org/10.1007/s00382-015-2911-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., T. Iwasaki, H. Qin, and W. Sha, 2014: Evaluation of the warm-season diurnal variability over East Asia in recent reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA. J. Climate, 27, 55175537, https://doi.org/10.1175/JCLI-D-14-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collard, A. D., and A. P. McNally, 2009: The assimilation of Infrared Atmospheric Sounding Interferometer radiances at ECMWF. Quart. J. Roy. Meteor. Soc., 135, 10441058, https://doi.org/10.1002/qj.410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., R. A. Anthes, and L. Tsao, 2014: Radio occultation observations as anchor observations in numerical weather prediction models and associated reduction of bias corrections in microwave and infrared satellite observations. J. Atmos. Oceanic Technol., 31, 2032, https://doi.org/10.1175/JTECH-D-13-00059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, S. M., and et al. , 2017: Assessment of upper tropospheric and stratospheric water vapour and ozone in reanalyses as part of S-RIP. Atmos. Chem. Phys., 17, 12 74312 778, https://doi.org/10.5194/acp-17-12743-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirksen, R. J., M. Sommer, F. J. Immler, D. F. Hurst, R. Kivi, and H. Vömel, 2014: Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde. Atmos. Meas. Tech., 7, 44634490, https://doi.org/10.5194/amt-7-4463-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufour, A., O. Zolina, and S. K. Gulev, 2016: Atmospheric moisture transport to the Arctic: Assessment of reanalyses and analysis of transport components. J. Climate, 29, 50615081, https://doi.org/10.1175/JCLI-D-15-0559.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • English, S. J., R. J. Renshaw, P. C. Dibben, A. J. Smith, P. J. Rayer, C. Poulsen, F. W. Saunders, and J. R. Eyre, 2000: A comparison of the impact of TOVS and ATOVS satellite sounding data on the accuracy of numerical weather forecasts. Quart. J. Roy. Meteor. Soc., 126, 29112931, https://doi.org/10.1256/SMSQJ.56914.

    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., and et al. , 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 14171452, https://doi.org/10.5194/acp-17-1417-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Y. Zhu, 2009: Examination of observation impacts derived from observing system experiments (OSEs) and adjoint models. Tellus, 61A, 179193, https://doi.org/10.1111/j.1600-0870.2008.00388.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guidard, V., N. Fourrié, P. Brousseau, and F. Rabier, 2011: Impact of IASI assimilation at global and convective scales and challenges for the assimilation of cloudy scenes. Quart. J. Roy. Meteor. Soc., 137, 19751987, https://doi.org/10.1002/qj.928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingleby, B., 2017: An assessment of different radiosonde types 2015/2016. ECMWF Tech. Memo. 807, 69 pp., https://www.ecmwf.int/en/elibrary/17551-assessment-different-radiosonde-types-2015-2016.

  • Ji, F., Z. Wu, J. Huang, and E. P. Chassignet, 2014: Evolution of land surface air temperature trend. Nat. Climate Change, 4, 462466, https://doi.org/10.1038/NCLIMATE2223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, R. W., I. A. Renfrew, A. Orr, B. G. M. Webber, D. M. Holland, and M. A. Lazzara, 2016: Evaluation of four global reanalysis products using in situ observations in the Amundsen Sea Embayment, Antarctica. J. Geophys. Res., 121, 62406257, https://doi.org/10.1002/2015JD024680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kishore, P., S. Jyothi, G. Basha, S. V. B. Rao, M. Rajeevan, I. Velicogna, and T. C. Sutterley, 2016: Precipitation climatology over India: Validation with observations and reanalysis datasets and spatial trends. Climate Dyn., 46, 541556, https://doi.org/10.1007/s00382-015-2597-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and et al. , 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavaysse, C., C. Flamant, A. Evan, S. Janicot, and M. Gaetani, 2016: Recent climatological trend of the Saharan heat low and its impact on the West African climate. Climate Dyn., 47, 34793498, https://doi.org/10.1007/s00382-015-2847-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, https://doi.org/10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, C. S., M. Fujiwara, S. Davis, D. M. Mitchell, and C. J. Wright, 2017: Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP). Atmos. Chem. Phys., 17, 14 59314 629, https://doi.org/10.5194/acp-17-14593-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and et al. , 2017: Reanalysis comparisons of upper tropospheric-lower stratospheric jets and multiple tropopauses. Atmos. Chem. Phys., 17, 11 54111 566, https://doi.org/10.5194/acp-17-11541-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manzanas, R., L. K. Amekudzi, K. Preko, S. Herrera, and J. M. Gutiérrez, 2014: Precipitation variability and trends in Ghana: An intercomparison of observational and reanalysis products. Climatic Change, 124, 805819, https://doi.org/10.1007/s10584-014-1100-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarty, W., and et al. , 2016: MERRA-2 input observations: Summary and assessment. NASA Tech. Rep. NASA/TM-2015-104606, Vol. 46, 51 pp.

  • Miloshevich, L. M., H. Vömel, A. Paukkunen, A. J. Heymsfield, and S. J. Oltmans, 2001: Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures. J. Atmos. Oceanic Technol., 18, 135156, https://doi.org/10.1175/1520-0426(2001)018<0135:CACORH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molnar, P., W. R. Boos, and D. S. Battisti, 2010: Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci., 38, 77102, https://doi.org/10.1146/annurev-earth-040809-152456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J., R. Smout, T. Oakley, B. Pathnack, and S. Kumosenko, 2006: WMO Intercomparison of High Quality Radiosonde Systems—Final Report, Vacoas, Mauritius, 2–25 February 2005. WMO Instruments and Observing Methods Rep. 83, 115 pp., https://library.wmo.int/doc_num.php?explnum_id=9312.

  • Nash, J., T. Oakley, H. Vömel, and W. Li, 2011: WMO Intercomparison of High Quality Radiosonde Systems Yangjiang, China, 12 July–3 August 2010. WMO Instruments and Observing Methods Rep. 107, 249 pp., https://library.wmo.int/doc_num.php?explnum_id=9467.

  • Nicolas, J. P., and D. H. Bromwich, 2014: New reconstruction of Antarctic near-surface temperatures: Multidecadal trends and reliability of global reanalyses. J. Climate, 27, 80708093, https://doi.org/10.1175/JCLI-D-13-00733.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nützel, M., M. Dameris, and H. Garny, 2016: Movement, drivers and bimodality of the South Asian High. Atmos. Chem. Phys., 16, 14 75514 774, https://doi.org/10.5194/acp-16-14755-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oakley, T., 1998: Report by the rapporteur on radiosonde compatibility monitoring—Part A: WMO catalogue of radiosondes and upper-air wind systems in use by members (1998) and Part B: Compatibility of radiosonde geopotential measurements 1995, 1996 and 1997. WMO Instruments and Observing Methods Rep. 72, 195 pp., https://library.wmo.int/doc_num.php?explnum_id=9701.

  • Parker, W. S., 2016: Reanalyses and observations: What’s the difference? Bull. Amer. Meteor. Soc., 97, 15651572, https://doi.org/10.1175/BAMS-D-14-00226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., S. B. Healy, and D. P. Dee, 2010: Assimilation of global positioning system radio occultation data in the ECMWF ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 136, 19721990, https://doi.org/10.1002/qj.722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, F. R., M. G. Bosilovich, J. Chen, and T. L. Miller, 2011: The effect of satellite observing system changes on MERRA water and energy fluxes. J. Climate, 24, 51975217, https://doi.org/10.1175/2011JCLI4227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, F. R., M. G. Bosilovich, J. B. Roberts, R. H. Reichle, R. Adler, L. Ricciardulli, W. Berg, and G. J. Huffman, 2014: Consistency of estimated global water cycle variations over the satellite era. J. Climate, 27, 61356154, https://doi.org/10.1175/JCLI-D-13-00384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robson, J., P. Ortega, and R. Sutton, 2016: A reversal of climatic trends in the North Atlantic since 2005. Nat. Geosci., 9, 513517, https://doi.org/10.1038/ngeo2727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, and J. Stroeve, 2012: Recent changes in tropospheric water vapor over the Arctic as assessed from radiosondes and atmospheric reanalyses. J. Geophys. Res., 117, D10104, https://doi.org/10.1029/2011JD017421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Si, D. and Y. Ding, Y., 2013: Decadal change in the correlation pattern between the Tibetan Plateau winter snow and the East Asian summer precipitation during 1979–2011. J. Climate, 26, 76227634, https://doi.org/10.1175/JCLI-D-12-00587.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siam, M. S., M. Demory, and E. A. B. Eltahir, 2013: Hydrological cycles over the Congo and upper Blue Nile basins: Evaluation of general circulation model simulations and reanalysis products. J. Climate, 26, 88818894, https://doi.org/10.1175/JCLI-D-12-00404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and P. Poli, 2015: Arctic warming in ERA-Interim and other analyses. Quart. J. Roy. Meteor. Soc., 141, 11471162, https://doi.org/10.1002/qj.2422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., A. Untch, C. Jakob, P. Kållberg, and P. Undén, 1999: Stratospheric water vapour and tropical tropopause temperatures in ECMWF analyses and multi-year simulations. Quart. J. Roy. Meteor. Soc., 125, 353386, https://doi.org/10.1002/qj.49712555318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and et al. , 2004: Comparison of trends and low-frequency variability in CRU, ERA-40 and NCEP/NCAR analyses of surface air temperature. J. Geophys. Res., 109, D24115, https://doi.org/10.1029/2004JD005306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., K. M. Willett, P. D. Jones, P. W. Thorne, and D. P. Dee, 2010: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational datasets. J. Geophys. Res., 115, D01110, https://doi.org/10.1029/2009JD012442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., P. Poli, D. P. Dee, P. Berrisford, H. Hersbach, S. Kobayashi, and C. Peubey, 2014: Estimating low-frequency variability and trends in atmospheric temperature using ERA-Interim. Quart. J. Roy. Meteor. Soc., 140, 329353, https://doi.org/10.1002/qj.2317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., P. Berrisford, D. P. Dee, H. Hersbach, S. Hirahara, and J.-N. Thpaut, 2017: A reassessment of temperature variations and trends from global reanalyses and monthly surface climatological datasets. Quart. J. Roy. Meteor. Soc., 143, 101119, https://doi.org/10.1002/qj.2949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, R., C. M. Kishtawal, S. P. Ojha, and P. K. Pal, 2012: Impact of assimilation of Atmospheric InfraRed Sounder (AIRS) radiances and retrievals in the WRF 3D-Var assimilation system. J. Geophys. Res., 117, D11107, https://doi.org/10.1029/2011JD017367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skrivankova, P., 2004: Vaisala radiosonde RS92 validation trial at Prague–Libus. Vaisala News, Vol. 164, Vaisala, Vantaa, Finland, 48, https://www.vaisala.com/sites/default/files/documents/VN164_Vaisala_Radiosonde_RS92_Validation_Trial_at_Prague-Libus.pdf.

    • Search Google Scholar
    • Export Citation
  • Steinbrecht, W., H. Claude, F. Schönenborn, U. Leiterer, H. Dier, and E. Lanzinger, 2008: Pressure and temperature differences between Vaisala RS80 and RS92 radiosonde systems. J. Atmos. Oceanic Technol., 25, 909927, https://doi.org/10.1175/2007JTECHA999.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorne, P., and R. S. Vose, 2010: Reanalyses suitable for characterizing long-term trends. Bull. Amer. Meteor. Soc., 91, 353361, https://doi.org/10.1175/2009BAMS2858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vömel, H., and et al. , 2007: Radiation dry bias of the Vaisala RS92 humidity sensor. J. Atmos. Oceanic Technol., 24, 953963, https://doi.org/10.1175/JTECH2019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, H., J. Ye, X. Liu, and E. Chongyi, 2010: Warming and drying trends on the Tibetan Plateau (1971–2005). Theor. Appl. Climatol., 101, 241253, https://doi.org/10.1007/s00704-009-0215-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., L. Chen, and M. Zhou, 2002: The Second Tibetan Plateau Experiment of Atmospheric Sciences: TIPEX-GAME/TIBET. China Meteorological Press, 236 pp.

  • Ye, D., 1981: Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) Plateau and its neighborhood. Bull. Amer. Meteor. Soc., 62, 1419, https://doi.org/10.1175/1520-0477(1981)062<0014:SCOTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, D., and G. Wu, 1998: The role of the heat source of the Tibetan Plateau in the general circulation. Meteor. Atmos. Phys., 67, 181198, https://doi.org/10.1007/BF01277509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., X. Xu, T. Koike, Y. Ma, and K. Yang, 2012: A China-Japan cooperative JICA atmospheric observing network over the Tibetan Plateau (JICA/Tibet Project): An overview. J. Meteor. Soc. Japan, 90C, 116, https://doi.org/10.2151/jmsj.2012-C01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, P., and et al. , 2018: The third atmospheric scientific experiment for understanding the Earth–atmosphere coupled system over the Tibetan Plateau and its effects. Bull. Amer. Meteor. Soc., 99, 757776, https://doi.org/10.1175/BAMS-D-16-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 79 79 8
PDF Downloads 144 144 7

How Accurate Are Modern Atmospheric Reanalyses for the Data-Sparse Tibetan Plateau Region?

View More View Less
  • 1 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 2 Center for Advanced Data Assimilation and Predictability Techniques, and Department of Meteorology and Atmospheric Science, The Pennsylvania State University, State College, Pennsylvania
© Get Permissions
Restricted access

Abstract

More than 6000 independent radiosonde observations from three major Tibetan Plateau experiments during the warm seasons (May–August) of 1998, 2008, and 2015–16 are used to assess the quality of four leading modern atmospheric reanalysis products (CFSR/CFSv2, ERA-Interim, JRA-55, and MERRA-2), and the potential impact of satellite data changes on the quality of these reanalyses in the troposphere over this data-sparse region. Although these reanalyses can reproduce reasonably well the overall mean temperature, specific humidity, and horizontal wind profiles against the benchmark independent sounding observations, they have nonnegligible biases that can be potentially bigger than the analysis-simulated mean regional climate trends over this region. The mean biases and mean root-mean-square errors of winds, temperature, and specific humidity from almost all reanalyses are reduced from 1998 to the two later experiment periods. There are also considerable differences in almost all variables across different reanalysis products, though these differences also become smaller during the 2008 and 2015–16 experiments, in particular for the temperature fields. The enormous increase in the volume and quality of satellite observations assimilated into reanalysis systems is likely the primary reason for the improved quality of the reanalyses during the later field experiment periods. Besides differences in the forecast models and data assimilation methodology, the differences in performance between different reanalyses during different field experiment periods may also be contributed by differences in assimilated information (e.g., observation input sources, selected channels for a given satellite sensor, quality-control methods).

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xinghua Bao, baoxh@cma.gov.cn

Abstract

More than 6000 independent radiosonde observations from three major Tibetan Plateau experiments during the warm seasons (May–August) of 1998, 2008, and 2015–16 are used to assess the quality of four leading modern atmospheric reanalysis products (CFSR/CFSv2, ERA-Interim, JRA-55, and MERRA-2), and the potential impact of satellite data changes on the quality of these reanalyses in the troposphere over this data-sparse region. Although these reanalyses can reproduce reasonably well the overall mean temperature, specific humidity, and horizontal wind profiles against the benchmark independent sounding observations, they have nonnegligible biases that can be potentially bigger than the analysis-simulated mean regional climate trends over this region. The mean biases and mean root-mean-square errors of winds, temperature, and specific humidity from almost all reanalyses are reduced from 1998 to the two later experiment periods. There are also considerable differences in almost all variables across different reanalysis products, though these differences also become smaller during the 2008 and 2015–16 experiments, in particular for the temperature fields. The enormous increase in the volume and quality of satellite observations assimilated into reanalysis systems is likely the primary reason for the improved quality of the reanalyses during the later field experiment periods. Besides differences in the forecast models and data assimilation methodology, the differences in performance between different reanalyses during different field experiment periods may also be contributed by differences in assimilated information (e.g., observation input sources, selected channels for a given satellite sensor, quality-control methods).

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xinghua Bao, baoxh@cma.gov.cn
Save