• Anstey, J. A., and T. G. Shepherd, 2014: High-latitude influence of the quasi-biennial oscillation. Quart. J. Roy. Meteor. Soc., 140, 121, https://doi.org/10.1002/qj.2132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 1998: Quasi-biennial modulation of the Southern Hemisphere stratospheric polar vortex. Geophys. Res. Lett., 25, 33433346, https://doi.org/10.1029/98GL02445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and et al. , 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

  • Bladé, I., and D. L. Hartmann, 1995: The linear and nonlinear extratropical response of the atmosphere to transient tropical heating. J. Atmos. Sci., 52, 44484471, https://doi.org/10.1175/1520-0469(1995)052<4448:TLANER>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvo, N., M. A. Giorgetta, and C. Peña-Ortiz, 2007: Sensitivity of the boreal winter circulation in the middle atmosphere to the quasi-biennial oscillation in MAECHAM5 simulations. J. Geophys. Res., 112, D10124, https://doi.org/10.1029/2006JD007844.

    • Search Google Scholar
    • Export Citation
  • Cohen, N. Y., E. P. Gerber, and O. Bühler, 2014: What drives the Brewer–Dobson circulation?. J. Atmos. Sci., 71, 38373855, https://doi.org/10.1175/JAS-D-14-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collimore, C. C., D. W. Martin, M. H. Hitchman, A. Huesmann, and D. E. Waliser, 2003: On the relationship between the QBO and tropical deep convection. J. Climate, 16, 25522568, https://doi.org/10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dima, I. M., J. M. Wallace, and I. Kraucunas, 2005: Tropical zonal momentum balance in the NCEP reanalyses. J. Atmos. Sci., 62, 24992513, https://doi.org/10.1175/JAS3486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., T. A. Shaw, D. L. Hartmann, and D. W. Waugh, 2012: Does the Holton–Tan mechanism explain how the quasi-biennial oscillation modulates the Arctic polar vortex? J. Atmos. Sci., 69, 17131733, https://doi.org/10.1175/JAS-D-11-0209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., L. Bengtsson, and K. Arpe, 1999: An investigation of QBO signals in the East Asian and Indian monsoon in GCM experiments. Climate Dyn., 15, 435450, https://doi.org/10.1007/s003820050292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., and et al. , 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst., 5, 572597, https://doi.org/10.1002/jame.20038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., J. D. Sheaffer, and J. A. Knaff, 1992: Hypothesized mechanism for stratospheric QBO influence on ENSO variability. Geophys. Res. Lett., 19, 107110, https://doi.org/10.1029/91GL02950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1996: Planetary-scale circulations forced by intraseasonal variations of observed convection. J. Atmos. Sci., 53, 17511758, https://doi.org/10.1175/1520-0469(1996)053<1751:PSCFBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., and A. S. Huesmann, 2009: Seasonal influence of the quasi-biennial oscillation on stratospheric jets and Rossby wave breaking. J. Atmos. Sci., 66, 935946, https://doi.org/10.1175/2008JAS2631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., and M. J. Rogal, 2010: ENSO influences on Southern Hemisphere column ozone during the winter to spring transition. J. Geophys. Res., 115, D20104, https://doi.org/10.1029/2009JD012844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and H. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 22002208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Q. Fu, 2009: Stratospheric warming in Southern Hemisphere high latitudes since 1979. Atmos. Chem. Phys., 9, 43294340, https://doi.org/10.5194/acp-9-4329-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inatsu, M., and B. J. Hoskins, 2004: The zonal asymmetry of the Southern Hemisphere winter storm track. J. Climate, 17, 48824892, https://doi.org/10.1175/JCLI-3232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, I. N., 1988: On the forcing of planetary-scale Rossby waves by Antarctica. Quart. J. Roy. Meteor. Soc., 114, 619637, https://doi.org/10.1002/qj.49711448105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, https://doi.org/10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and et al. , 2013: Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM), the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst., 5, 422446, https://doi.org/10.1002/jame.20023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., R. A. Plumb, and M. Ting, 1989: Examples of the horizontal propagation of quasi-stationary waves. J. Atmos. Sci., 46, 28022811, https://doi.org/10.1175/1520-0469(1989)046<2802:EOTHPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krismer, T. R., and M. A. Giorgetta, 2014: Wave forcing of the quasi-biennial oscillation in the Max Planck Institute Earth system model. J. Atmos. Sci., 71, 19852006, https://doi.org/10.1175/JAS-D-13-0310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krismer, T. R., M. A. Giorgetta, and M. Esch, 2013: Seasonal aspects of the quasibiennial oscillation in MPIESM and ERA40. J. Adv. Model. Earth Syst., 5, 406421, https://doi.org/10.1002/jame.20024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., and M. P. Meredith, 2004: Variability of Antarctic circumpolar transport and the southern annular mode associated with the Madden–Julian oscillation. Geophys. Res. Lett., 31, L24312, https://doi.org/10.1029/2004GL021666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechoso, C., and et al. , 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123, 28252838, https://doi.org/10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naoe, H., and K. Shibata, 2010: Equatorial quasi-biennial oscillation influence on northern winter extratropical circulation. J. Geophys. Res., 115, D19102, https://doi.org/10.1029/2009JD012952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishii, K., and H. Nakamura, 2004: Lower-stratospheric Rossby wave trains in the Southern Hemisphere: A case study for late winter of 1997. Quart. J. Roy. Meteor. Soc., 130, 325345, https://doi.org/10.1256/qj.02.156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quintanar, A. I., and C. R. Mechoso, 1995a: Quasi-stationary waves in the Southern Hemisphere. Part I: Observational data. J. Climate, 8, 26592672, https://doi.org/10.1175/1520-0442(1995)008<2659:QSWITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quintanar, A. I., and C. R. Mechoso, 1995b: Quasi-stationary waves in the Southern Hemisphere. Part II: Generation mechanisms. J. Climate, 8, 26732690, https://doi.org/10.1175/1520-0442(1995)008<2673:QSWITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russo, M. R., and et al. , 2011: Representation of tropical deep convection in atmospheric models—Part 1: Meteorology and comparison with satellite observations. Atmos. Chem. Phys., 11, 27652786, https://doi.org/10.5194/acp-11-2765-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruzmaikin, A., J. Feynman, X. Jiang, and Y. L. Yung, 2005: Extratropical signature of the quasi-biennial oscillation. J. Geophys. Res., 110, D11111, https://doi.org/10.1029/2004JD005382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and et al. , 2013: Response of the middle atmosphere to anthropogenic and natural forcings in the CMIP5 simulations with the Max Planck Institute Earth system model. J. Adv. Model. Earth Syst., 5, 98116, https://doi.org/10.1002/jame.20014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S., Y. Lim, C. Yoo, H. H. Hendon, and J. Kim, 2017: Stratospheric control of the Madden–Julian oscillation. J. Climate, 30, 19091922, https://doi.org/10.1175/JCLI-D-16-0620.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamashita, Y., H. Akiyoshi, and M. Takahashi, 2011: Dynamical response in the Northern Hemisphere midlatitude and high-latitude winter to the QBO simulated by CCSR/NIES CCM. J. Geophys. Res., 116, D06118, https://doi.org/10.1029/2010JD015016.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 90 90 31
PDF Downloads 72 72 11

Tropical Deep Convection Impact on Southern Winter Stationary Waves and Its Modulation by the Quasi-Biennial Oscillation

View More View Less
  • 1 Universidad Pablo de Olavide, Sevilla, Spain
  • | 2 Max Planck Institute for Meteorology, Hamburg, Germany
© Get Permissions
Restricted access

Abstract

The impact of tropical deep convection on southern winter stationary waves and its modulation by the quasi-biennial oscillation (QBO) have been investigated in a long (210 year) climate model simulation and in ERA-Interim reanalysis data for the period 1979–2018. Model results reveal that tropical deep convection over the region of its climatological maximum modulates high-latitude stationary planetary waves in the southern winter hemisphere, corroborating the dominant role of tropical thermal forcing in the generation of these waves. In the tropics, deep convection enhancement leads to wavenumber-1 eddy anomalies that reinforce the climatological Rossby–Kelvin wave couplet. The Rossby wave propagates toward the extratropical southern winter hemisphere and upward through the winter stratosphere reinforcing wavenumber-1 climatological eddies. As a consequence, stronger tropical deep convection is related to greater upward wave propagation and, consequently, to a stronger Brewer–Dobson circulation and a warmer polar winter stratosphere. This linkage between tropical deep convection and the Southern Hemisphere (SH) winter polar vortex is also found in the ERA-Interim reanalysis. Furthermore, model results indicate that the enhancement of deep convection observed during the easterly phase of the QBO (E-QBO) gives rise to a similar modulation of the southern winter extratropical stratosphere, which suggests that the QBO modulation of convection plays a fundamental role in the transmission of the QBO signature to the southern stratosphere during the austral winter, revealing a new pathway for the QBO–SH polar vortex connection. ERA-Interim corroborates a QBO modulation of deep convection; however, the shorter data record does not allow us to assess its possible impact on the SH polar vortex.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0763.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cristina Peña-Ortiz, cpenort@upo.es

Abstract

The impact of tropical deep convection on southern winter stationary waves and its modulation by the quasi-biennial oscillation (QBO) have been investigated in a long (210 year) climate model simulation and in ERA-Interim reanalysis data for the period 1979–2018. Model results reveal that tropical deep convection over the region of its climatological maximum modulates high-latitude stationary planetary waves in the southern winter hemisphere, corroborating the dominant role of tropical thermal forcing in the generation of these waves. In the tropics, deep convection enhancement leads to wavenumber-1 eddy anomalies that reinforce the climatological Rossby–Kelvin wave couplet. The Rossby wave propagates toward the extratropical southern winter hemisphere and upward through the winter stratosphere reinforcing wavenumber-1 climatological eddies. As a consequence, stronger tropical deep convection is related to greater upward wave propagation and, consequently, to a stronger Brewer–Dobson circulation and a warmer polar winter stratosphere. This linkage between tropical deep convection and the Southern Hemisphere (SH) winter polar vortex is also found in the ERA-Interim reanalysis. Furthermore, model results indicate that the enhancement of deep convection observed during the easterly phase of the QBO (E-QBO) gives rise to a similar modulation of the southern winter extratropical stratosphere, which suggests that the QBO modulation of convection plays a fundamental role in the transmission of the QBO signature to the southern stratosphere during the austral winter, revealing a new pathway for the QBO–SH polar vortex connection. ERA-Interim corroborates a QBO modulation of deep convection; however, the shorter data record does not allow us to assess its possible impact on the SH polar vortex.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0763.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cristina Peña-Ortiz, cpenort@upo.es

Supplementary Materials

    • Supplemental Materials (PDF 1.01 MB)
Save