• Ainsworth, E. A., and D. R. Ort, 2010: How do we improve crop production in a warming world? Plant Physiol., 154, 526530, https://doi.org/10.1104/pp.110.161349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., and et al. , 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bannister, D., M. Herzog, H. Graf, J. S. Hosking, and C. A. Short, 2017: An assessment of recent and future temperature change over the Sichuan basin, China, using CMIP5 climate models. J. Climate, 30, 67016722, https://doi.org/10.1175/JCLI-D-16-0536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barsugli, J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477493, https://doi.org/10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellouin, N., O. Boucher, J. Haywood, C. Johnson, A. Jones, J. Rae, and S. Woodward, 2007: Improved representation of aerosols for HadGEM2. Hadley Centre Tech. Note 73, 42 pp.

  • Boé, J., and L. Terray, 2014: Land–sea contrast, soil–atmosphere and cloud–temperature interactions: Interplays and roles in future summer European climate change. Climate Dyn., 42, 683699, https://doi.org/10.1007/s00382-013-1868-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., and B. W. Dong, 2019: Anthropogenic impacts on recent decadal change in temperature extremes over China: Relative roles of greenhouse gases and anthropogenic aerosols. Climate Dyn., 52, 36433660, https://doi.org/10.1007/s00382-018-4342-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christidis, N., and et al. , 2013: A new HadGEM3-A-based system for attribution of weather and climate-related extreme events. J. Climate, 26, 27562783, https://doi.org/10.1175/JCLI-D-12-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and et al. , 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 525–582.

    • Search Google Scholar
    • Export Citation
  • Díaz, J., R. García, C. López, C. Linares, A. Tobías, and L. Prieto, 2005: Mortality impact of extreme winter temperatures. Int. J. Biometeor., 49, 179183, https://doi.org/10.1007/s00484-004-0224-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., L. V. Alexander, H. Yang, I. Durre, R. Vose, and J. Caesar, 2013: Global land-based datasets for monitoring climatic extremes. Bull. Amer. Meteor. Soc., 94, 9971006, https://doi.org/10.1175/BAMS-D-12-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B.-W., J. M. Gregory, and R. T. Sutton, 2009: Understanding land–sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J. Climate, 22, 30793097, https://doi.org/10.1175/2009JCLI2652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B.-W., R. T. Sutton, E. Highwood, and L. Wilcox, 2016a: Preferred response of the East Asian summer monsoon to local and nonlocal anthropogenic sulphur dioxide emissions. Climate Dyn., 46, 17331751, https://doi.org/10.1007/s00382-015-2671-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B.-W., R. T. Sutton, W. Chen, X. D. Liu, R. Lu, and Y. Sun, 2016b: Abrupt summer warming and changes in temperature extremes over Northeast Asia since the mid-1990s: Drivers and physical processes. Adv. Atmos. Sci., 33, 10051023, https://doi.org/10.1007/s00376-016-5247-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B.-W., R. T. Sutton, and L. Shaffrey, 2017a: Understanding the rapid summer warming and changes in temperature extremes since the mid-1990s over Western Europe. Climate Dyn., 48, 15371554, https://doi.org/10.1007/s00382-016-3158-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B.-W., R. T. Sutton, L. Shaffrey, and N. P. Klingaman, 2017b: Attribution of forced decadal climate change in coupled and uncoupled ocean–atmosphere model experiments. J. Climate, 30, 62036223, https://doi.org/10.1175/JCLI-D-16-0578.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B.-W., L. Wilcox, E. Highwood, and R. T. Sutton, 2019: Impacts of recent decadal changes in Asian aerosols on the East Asian summer monsoon: Roles of aerosol–radiation and aerosol–cloud interactions. Climate Dyn., 53, 32353256, https://doi.org/10.1007/s00382-019-04698-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., 2005: Limitations of time-slice experiments for predicting regional climate change over South Asia. Climate Dyn., 24, 373391, https://doi.org/10.1007/s00382-004-0509-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goderniaux, P., S. Brouyère, S. Blenkinsop, A. Burton, H. J. Fowler, P. Orban, and A. Dassargues, 2011: Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios. Water Resour. Res., 47, W12516, https://doi.org/10.1029/2010WR010082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, Y., X. Zhang, F. Zheng, and B. Wang, 2015: Trends and variability of daily temperature extremes during 1960–2012 in the Yangtze River Basin, China. Global Planet. Change, 124, 7994, https://doi.org/10.1016/j.gloplacha.2014.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 68316864, https://doi.org/10.1029/96JD03436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., and B. Soden, 2016: Does the lack of coupling in SST-forced atmosphere-only models limit their usefulness for climate change studies? J. Climate, 29, 43174325, https://doi.org/10.1175/JCLI-D-14-00597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., E.-P. Lim, and G. Liu, 2012: The role of air–sea interaction for prediction of Australian summer monsoon rainfall. J. Climate, 25, 12781290, https://doi.org/10.1175/JCLI-D-11-00125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hertel, T. W., and S. D. Rosch, 2010: Climate change, agriculture, and poverty. Appl. Econ. Perspect. Policy, 32, 355385, https://doi.org/10.1093/aepp/ppq016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, X., R. Lu, and S. Li, 2017: Amplified summer warming in Europe—West Asia and Northeast Asia after the mid-1990s. Environ. Res. Lett., 12, 094007, https://doi.org/10.1088/1748-9326/aa7909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.

  • Kamae, Y., H. Shiogama, M. Watanabe, and M. Kimoto, 2014: Attributing the increase in Northern Hemisphere hot summers since the late 20th century. Geophys. Res. Lett., 41, 51925199, https://doi.org/10.1002/2014GL061062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, M. J., S.-W. Yeh, and R. J. Park, 2016: Effects of sulfate aerosol forcing on East Asian summer monsoon for 1985–2010. Geophys. Res. Lett., 43, 13641372, https://doi.org/10.1002/2015GL067124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., S.-K. Min, X. Zhang, F. Zwiers, L. V. Alexander, M. G. Donat, and Y.-S. Tung, 2016: Attribution of extreme temperature changes during 1951–2010. Climate Dyn., 46, 17691782, https://doi.org/10.1007/s00382-015-2674-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C. X., T. B. Zhao, and K. R. Ying, 2015: Effects of anthropogenic aerosols on temperature changes in China during the twentieth century based on CMIP5 models. Theor. Appl. Climatol., 125, 529540, https://doi.org/10.1007/s00704-015-1527-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., and et al. , 2016: Comparison of two homogenized datasets of daily maximum/mean/minimum temperature in China during 1960–2013. J. Meteor. Res., 30, 5366, https://doi.org/10.1007/s13351-016-5054-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, S. M., T. Zhou, D. Stone, O. Angélil, and H. Shiogama, 2017: Attribution of the July–August 2013 heat event in central and eastern China to anthropogenic greenhouse gas emissions. Environ. Res. Lett., 12, 054020, https://doi.org/10.1088/1748-9326/aa69d2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and et al. , 2000: An introduction to trends in extreme weather and climate events: Observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bull. Amer. Meteor. Soc., 81, 413416, https://doi.org/10.1175/1520-0477(2000)081<0413:AITTIE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penner, J. E., M. O. Andreae, H. Annegarn, L. Barrie, J. Feichter, D. Hegg, and G. Pitari, 2001: Aerosols, their direct and indirect effects. Climate Change 2001: The Scientific Basis. T. F. Stocker et al., Eds., Cambridge University Press, 289–348.

    • Search Google Scholar
    • Export Citation
  • Qi, L., and Y. Wang, 2012: Changes in the observed trends in extreme temperatures over China around 1990. J. Climate, 25, 52085222, https://doi.org/10.1175/JCLI-D-11-00437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaller, N., and et al. , 2016: Human influence on climate in the 2014 southern England winter floods and their impacts. Nat. Climate Change, 6, 627634, https://doi.org/10.1038/nclimate2927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J., L. Cui, Y. Ma, H. Du, and K. Wen, 2018: Trends in temperature extremes and their association with circulation patterns in China during 1961–2015. Atmos. Res., 212, 259272, https://doi.org/10.1016/j.atmosres.2018.05.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., T. Zhou, and Y. Qian, 2014: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, 596603, https://doi.org/10.1002/2013GL058705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinman, B. A., M. E. Mann, and S. K. Miller, 2015: Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 347, 988991, https://doi.org/10.1126/science.1257856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, https://doi.org/10.1038/nature08281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., X. Zhang, F. W. Zwiers, L. Song, H. Wan, T. Hu, H. Yin, and G. Ren, 2014: Rapid increase in the risk of extreme summer heat in Eastern China. Nat. Climate Change, 4, 10821085, https://doi.org/10.1038/nclimate2410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, F. X., B. W. Dong, J. Robson, and R. T. Sutton, 2018: Forced decadal changes in the East Asian summer monsoon: The roles of greenhouse gases and anthropogenic aerosols. Climate Dyn., 6, 36993715, https://doi.org/10.1007/s00382-018-4105-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, G. Branstator, and A. S. Phillips, 2014: Seasonal aspects of the recent pause in surface warming. Nat. Climate Change, 4, 911916, https://doi.org/10.1038/nclimate2341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2004: A modeling study on the climate impacts of black carbon aerosols. J. Geophys. Res., 109, D03106, https://doi.org/10.1029/2003JD004084.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., B. Zhou, D. Qin, J. Wu, R. Gao, and L. Song, 2017: Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection. Adv. Atmos. Sci., 34, 289305, https://doi.org/10.1007/s00376-016-6160-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, H. Q., X. Zhang, Y. Xu, and B. Wang, 2013: Detecting human influence on extreme temperatures in China. Geophys. Res. Lett., 40, 11711176, https://doi.org/10.1002/grl.50285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcox, L. J., B. W. Dong, R. T. Sutton, and E. J. Highwood, 2015: The 2014 hot, dry summer in northeast Asia [in “Explaining Extreme Events of 2014 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 96 (12), S105S110, https://doi.org/10.1175/BAMS-D-15-00123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and et al. , 2015: The Met Office global coupled model 2.0 (GC2) configuration. Geosci. Model Dev., 8, 15091524, https://doi.org/10.5194/gmd-8-1509-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N., and et al. , 2014: An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quart. J. Roy. Meteor. Soc., 140, 15051520, https://doi.org/10.1002/qj.2235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, H., Y. Sun, H. Wan, X. B. Zhang, and C. H. Lu, 2017: Detection of anthropogenic influence on the intensity of extreme temperatures in China. Int. J. Climatol., 37, 12291237, https://doi.org/10.1002/joc.4771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Z., and X. Li, 2015: Recent trends in daily temperature extremes over northeastern China (1960–2011). Quat. Int., 380–381, 3548, https://doi.org/10.1016/j.quaint.2014.09.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T. B., C. X. Li, and Z. Y. Zuo, 2016: Contributions of anthropogenic and external natural forcings to climate changes over China based on CMIP5 model simulations. Sci. China Earth Sci., 59, 503517, https://doi.org/10.1007/s11430-015-5207-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B. T., Y. Xu, J. Wu, S. Dong, and Y. Shi, 2016: Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. Int. J. Climatol., 36, 10511106, https://doi.org/10.1002/joc.4400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., and J. Shukla, 2013: The role of air–sea coupling in seasonal prediction of Asia–Pacific summer monsoon rainfall. J. Climate, 26, 56895697, https://doi.org/10.1175/JCLI-D-13-00190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 95 95 11
PDF Downloads 83 83 10

Attribution of Recent Trends in Temperature Extremes over China: Role of Changes in Anthropogenic Aerosol Emissions over Asia

View More View Less
  • 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 2 National Centre for Atmospheric Science–Climate, Department of Meteorology, University of Reading, Reading, United Kingdom
  • | 3 Nansen-Zhu International Research Centre and Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 4 Met Office Hadley Centre, Exeter, United Kingdom
  • | 5 Department of Meteorology, University of Reading, Reading, United Kingdom
© Get Permissions
Restricted access

ABSTRACT

Observations indicate large changes in temperature extremes over China during the last four decades, exhibiting as significant increases in the amplitude and frequency of hot extremes and decreases in the amplitude and frequency of cold extremes. An ensemble of transient experiments with the fully coupled atmosphere–ocean model HadGEM3-GC2, including both anthropogenic forcing and natural forcing, successfully reproduces the spatial pattern and magnitude of observed historical trends in both hot and cold extremes. The model-simulated trends in temperature extremes primarily come from the positive trends in clear-sky longwave radiation, which is mainly due to the increases in greenhouse gases (GHGs). An ensemble of sensitivity experiments with Asian anthropogenic aerosol (AA) emissions fixed at their 1970s levels tends to overestimate the trends in temperature extremes, indicating that local AA emission changes have moderated the trends in these temperature extremes over China. The recent increases in Asian AA drive cooling trends over China by inducing negative clear-sky shortwave radiation directly through the aerosol–radiation interaction, which partly offsets the strong warming effect by GHG changes. The cooling trends induced by Asian AA changes are weaker over northern China during summer, which is due to the warming effect by the positive shortwave cloud radiative effect through the AA-induced atmosphere–cloud feedback. This accounts for the observed north–south gradients of the historical trends in some temperature extremes over China, highlighting the importance of local Asian AA emission changes on spatial heterogeneity of trends in temperature extremes.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wei Chen, chenwei@mail.iap.ac.cn

ABSTRACT

Observations indicate large changes in temperature extremes over China during the last four decades, exhibiting as significant increases in the amplitude and frequency of hot extremes and decreases in the amplitude and frequency of cold extremes. An ensemble of transient experiments with the fully coupled atmosphere–ocean model HadGEM3-GC2, including both anthropogenic forcing and natural forcing, successfully reproduces the spatial pattern and magnitude of observed historical trends in both hot and cold extremes. The model-simulated trends in temperature extremes primarily come from the positive trends in clear-sky longwave radiation, which is mainly due to the increases in greenhouse gases (GHGs). An ensemble of sensitivity experiments with Asian anthropogenic aerosol (AA) emissions fixed at their 1970s levels tends to overestimate the trends in temperature extremes, indicating that local AA emission changes have moderated the trends in these temperature extremes over China. The recent increases in Asian AA drive cooling trends over China by inducing negative clear-sky shortwave radiation directly through the aerosol–radiation interaction, which partly offsets the strong warming effect by GHG changes. The cooling trends induced by Asian AA changes are weaker over northern China during summer, which is due to the warming effect by the positive shortwave cloud radiative effect through the AA-induced atmosphere–cloud feedback. This accounts for the observed north–south gradients of the historical trends in some temperature extremes over China, highlighting the importance of local Asian AA emission changes on spatial heterogeneity of trends in temperature extremes.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wei Chen, chenwei@mail.iap.ac.cn
Save