Extreme Snow Events along the Coast of the Northeast United States: Analysis of Observations and HiRAM Simulations

Guoxing Chen Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

Search for other papers by Guoxing Chen in
Current site
Google Scholar
PubMed
Close
,
Wei-Chyung Wang Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

Search for other papers by Wei-Chyung Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2397-8100
,
Lijun Tao Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

Search for other papers by Lijun Tao in
Current site
Google Scholar
PubMed
Close
,
Huang-Hsiung Hsu Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

Search for other papers by Huang-Hsiung Hsu in
Current site
Google Scholar
PubMed
Close
,
Chia-Ying Tu Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

Search for other papers by Chia-Ying Tu in
Current site
Google Scholar
PubMed
Close
, and
Chao-Tzuen Cheng National Science and Technology Center for Disaster Reduction, Taipei, Taiwan

Search for other papers by Chao-Tzuen Cheng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study used both observations and global climate model simulations to investigate the characteristics of winter extreme snowfall events along the coast (the Interstate 95 corridor) of the northeast United States where several mega-cities are located. Observational analyses indicate that, during 1980–2015, 110 events occurred when four coastal cities—Boston, New York City, Philadelphia, and Washington, D.C.—had either individually or collectively experienced daily snowfall exceeding the local 95th percentile thresholds. Boston had the most events, with a total of 69, followed by 40, 36, and 30 (moving southward) in the other three cities. The associated circulations at 200 and 850 hPa were categorized via K-means clustering. The resulting three composite circulations are characterized by the strength and location of the jet at 200 hPa and the coupled low pressure system at 850 hPa: a strong jet overlying the cities coupled with an inland trough, a weak and slightly southward shifted jet coupled with a cyclone at the coast, and a weak jet stream situated to the south of the cities coupled with a cyclone over the coastal oceans. Comparative analyses were also conducted using the GFDL High Resolution Atmospheric Model (HiRAM) simulation of the same period. Although the simulated extreme events do not provide one-to-one correspondence with observations, the characteristics nevertheless show consistency notably in total number of occurrences, intraseasonal and multiple-year variations, snow spatial coverage, and the associated circulation patterns. Possible future change in extreme snow events was also explored utilizing the HiRAM RCP8.5 (2075–2100) simulation. The analyses suggest that a warming global climate tends to decrease the extreme snowfall events but increase extreme rainfall events.

Current affiliation: State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0874.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wei-Chyung Wang, wcwang@albany.edu

Abstract

This study used both observations and global climate model simulations to investigate the characteristics of winter extreme snowfall events along the coast (the Interstate 95 corridor) of the northeast United States where several mega-cities are located. Observational analyses indicate that, during 1980–2015, 110 events occurred when four coastal cities—Boston, New York City, Philadelphia, and Washington, D.C.—had either individually or collectively experienced daily snowfall exceeding the local 95th percentile thresholds. Boston had the most events, with a total of 69, followed by 40, 36, and 30 (moving southward) in the other three cities. The associated circulations at 200 and 850 hPa were categorized via K-means clustering. The resulting three composite circulations are characterized by the strength and location of the jet at 200 hPa and the coupled low pressure system at 850 hPa: a strong jet overlying the cities coupled with an inland trough, a weak and slightly southward shifted jet coupled with a cyclone at the coast, and a weak jet stream situated to the south of the cities coupled with a cyclone over the coastal oceans. Comparative analyses were also conducted using the GFDL High Resolution Atmospheric Model (HiRAM) simulation of the same period. Although the simulated extreme events do not provide one-to-one correspondence with observations, the characteristics nevertheless show consistency notably in total number of occurrences, intraseasonal and multiple-year variations, snow spatial coverage, and the associated circulation patterns. Possible future change in extreme snow events was also explored utilizing the HiRAM RCP8.5 (2075–2100) simulation. The analyses suggest that a warming global climate tends to decrease the extreme snowfall events but increase extreme rainfall events.

Current affiliation: State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0874.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wei-Chyung Wang, wcwang@albany.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.06 MB)
Save
  • Agel, L., M. Barlow, J.-H. Qian, F. Colby, E. Douglas, and T. Eichler, 2015: Climatology of daily precipitation and extreme precipitation events in the northeast United States. J. Hydrometeor., 16, 25372557, https://doi.org/10.1175/JHM-D-14-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agel, L., M. Barlow, S. B. Feldstein, and W. J. Gutowski, 2018: Identification of large-scale meteorological patterns associated with extreme precipitation in the US northeast. Climate Dyn., 50, 18191839, https://doi.org/10.1007/s00382-017-3724-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agel, L., M. Barlow, F. Colby, H. Binder, J. L. Catto, A. Hoell, and J. Cohen, 2019: Dynamical analysis of extreme precipitation in the US northeast based on large-scale meteorological patterns. Climate Dyn., 52, 17391760, https://doi.org/10.1007/S00382-018-4223-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882, https://doi.org/10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, P. J., R. S. Bradley, and F. T. Keimig, 2010: Changes in extreme climate indices for the northeastern United States, 1870–2005. J. Climate, 23, 65556572, https://doi.org/10.1175/2010JCLI3363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browne, R. F., and R. J. Younkin, 1970: Some relationships between 850-millibar lows and heavy snow occurrences over the central and eastern United States. Mon. Wea. Rev., 98, 399401, https://doi.org/10.1175/1520-0493(1970)098<0399:SRBMLA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caliński, T., and J. Harabasz, 1974: A dendrite method for cluster analysis. Commun. Stat., 3, 127, https://doi.org/10.1080/03610927408827101.

    • Search Google Scholar
    • Export Citation
  • Changnon, D., C. Merinsky, and M. Lawson, 2008: Climatology of surface cyclone tracks associated with large central and eastern U.S. snowstorms, 1950–2000. Mon. Wea. Rev., 136, 31933202, https://doi.org/10.1175/2008MWR2324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., and D. Changnon, 2005: Snowstorm catastrophes in the United States. Global Environ. Change, 6B, 158166, https://doi.org/10.1016/J.HAZARDS.2006.06.001.

    • Search Google Scholar
    • Export Citation
  • Chen, C.-A., H.-H. Hsu, C.-C. Hong, P.-G. Chiu, C.-Y. Tu, S.-J. Lin, and A. Kitoh, 2019: Seasonal precipitation change in the western North Pacific and East Asia under global warming in two high-resolution AGCMs. Climate Dyn., https://doi.org/10.1007/S00382-019-04883-1.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., and S.-J. Lin, 2011: The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophys. Res. Lett., 38, L11804, https://doi.org/10.1029/2011GL047629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26, 380398, https://doi.org/10.1175/JCLI-D-12-00061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Z. Zhang, K. A. Lombardo, E. Chang, P. Liu, and M. Zhang, 2013: Historical evaluation and future prediction of eastern North American and western Atlantic extratropical cyclones in the CMIP5 models during the cool season. J. Climate, 26, 68826903, https://doi.org/10.1175/JCLI-D-12-00498.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., J. F. Booth, and E. K. M. Chang, 2015: A review of historical and future changes of extratropical cyclones and associated impacts along the US east coast. Curr. Climate Change Rep., 1, 125143, https://doi.org/10.1007/s40641-015-0013-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freychet, N., and Coauthors, 2017a: Variability of hydrological extreme events in East Asia and their dynamical control: A comparison between observations and two high-resolution global climate models. Climate Dyn., 48, 745766, https://doi.org/10.1007/s00382-016-3108-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freychet, N., H.-H. Hsu, A. Duchez, and C.-Y. Tu, 2017b: Projection in snowfall characteristics over the European Alps and its sensitivity to the SST changes: Results from a 50-km resolution AGCM. Atmos. Sci. Lett., 18, 261267, https://doi.org/10.1002/asl.751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganetis, S. A., and B. A. Colle, 2015: The thermodynamic and microphysical evolution of an intense snowband during the northeast U.S. blizzard of 8–9 February 2013. Mon. Wea. Rev., 143, 41044125, https://doi.org/10.1175/MWR-D-14-00407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grumm, R. H., and R. Hart, 2001: Standardized anomalies applied to significant cold season weather events: Preliminary findings. Wea Forecasting, 16, 736754, https://doi.org/10.1175/1520-0434(2001)016<0736:SAATSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W.-R., Y.-H. Chang, C.-T. Cheng, H.-H. Hsu, C.-Y. Tu, and A. Kitoh, 2016a: Summer convective afternoon rainfall simulation and projection using WRF driven by global climate model. Part I: Over Taiwan. Terr. Atmos. Oceanic Sci., 27, 659671, https://doi.org/10.3319/TAO.2016.05.02.01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W.-R., Y.-H. Chang, H.-H. Hsu, C.-T. Cheng, and C.-Y. Tu, 2016b: Dynamical downscaling simulation and future projection of summer rainfall in Taiwan: Contributions from different types of rain events. J. Geophys. Res., 121, 13 97313 988, https://doi.org/10.1002/2016JD025643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W.-R., P.-H. Huang, Y.-H. Chang, C.-T. Cheng, H.-H. Hsu, C.-Y. Tu, and A. Kitoh, 2019: Dynamical downscaling simulation and future projection of extreme precipitation activities in Taiwan during the mei-yu seasons. J. Meteor. Soc. Japan, 97, 481499, https://doi.org/10.2151/jmsj.2019-028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitoh, A., and H. Endo, 2016: Changes in precipitation extremes projected by a 20-km mesh global atmospheric model. Wea. Climate Extremes, 11, 4152, https://doi.org/10.1016/j.wace.2015.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kocin, P. J., and L. W. Uccellini, 1990: Descriptions of 20 major snowstorms. Snowstorms along the Northeastern Coast of the United States: 1955 to 1985, Meteor. Monogr., No. 44, Amer. Meteor. Soc., 20–41.

    • Crossref
    • Export Citation
  • Kocin, P. J., and L. W. Uccellini, 2004a: Synoptic descriptions of major snowstorms: Upper-level features. Northeast Snowstorms, Meteor. Monogr., No. 54, Amer. Meteor. Soc., 79–142.

    • Crossref
    • Export Citation
  • Kocin, P. J., and L. W. Uccellini, 2004b: A snowfall impact scale derived from northeast storm snowfall distributions. Bull. Amer. Meteor. Soc., 85, 177194, https://doi.org/10.1175/BAMS-85-2-177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusunoki, S., 2018: Future changes in precipitation over East Asia projected by the global atmospheric model MRI-AGCM3.2. Climate Dyn., 51, 46014617, https://doi.org/10.1007/s00382-016-3499-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012a: An overview of the Global Historical Climatology Network–Daily Database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and Coauthors, 2012b: Global Historical Climatology Network–Daily (GHCN-Daily), version 3.22. NOAA National Climatic Data Center, accessed 19 September 2017, https://doi.org/10.7289/V5D21VHZ.

    • Crossref
    • Export Citation
  • Michelangeli, P.-A., R. Vautard, and B. Legras, 1995: Weather regimes: Recurrence and quasi stationarity. J. Atmos. Sci., 52, 12371256, https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, J. E., 1946: Cyclogenesis in the Atlantic coastal region of the United States. J. Meteor., 3, 3144, https://doi.org/10.1175/1520-0469(1946)003<0031:CITACR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizuta, R., and Coauthors, 2012: Climate simulations using MRI-AGCM3.2 with 20-km grid. J. Meteor. Soc. Japan, 90A, 233258, https://doi.org/10.2151/JMSJ.2012-A12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizuta, R., and Coauthors, 2017: Over 5,000 years of ensemble future climate simulations by 60-km global and 20-km regional atmospheric models. Bull. Amer. Meteor. Soc., 98, 13831398, https://doi.org/10.1175/BAMS-D-16-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moron, V., A. W. Robertson, M. N. Ward, and O. Ndiaye, 2008: Weather types and rainfall over Senegal. Part I: Observational analysis. J. Climate, 21, 266287, https://doi.org/10.1175/2007JCLI1601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moron, V., A. W. Robertson, and J.-H. Qian, 2010: Local versus regional-scale characteristics of monsoon onset and post-onset rainfall over Indonesia. Climate Dyn., 34, 281299, https://doi.org/10.1007/s00382-009-0547-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ning, L., and R. S. Bradley, 2015: Winter climate extremes over the northeastern United States and southeastern Canada and teleconnections with large-scale modes of climate variability. J. Climate, 28, 24752493, https://doi.org/10.1175/JCLI-D-13-00750.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., W. C. Wang, and W. Gong, 2006: Model and observational analysis of the northeast U.S. regional climate and its relationship to the PNA and NAO patterns during early winter. Mon. Wea. Rev., 134, 34793505, https://doi.org/10.1175/MWR3234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 28252830.

  • Plaut, G., E. Schuepbach, and M. Doctor, 2001: Heavy precipitation events over a few Alpine sub-regions and the links with large-scale circulation, 1971–1995. Climate Res., 17, 285302, https://doi.org/10.3354/cr017285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, https://doi.org/10.1016/j.jcp.2007.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roller, C. D., J.-H. Qian, L. Agel, M. Barlow, and V. Moron, 2016: Winter weather regimes in the northeast United States. J. Climate, 29, 29632980, https://doi.org/10.1175/JCLI-D-15-0274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuart, N. A., and R. H. Grumm, 2006: Using wind anomalies to forecast east coast winter storms. Wea. Forecasting, 21, 952968, https://doi.org/10.1175/WAF964.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsou, C.-H., P.-Y. Huang, C.-Y. Tu, C.-T. Chen, T.-P. Tzeng, and C.-T. Cheng, 2016: Present simulation and future typhoon activity projection over western North Pacific and Taiwan/east coast of China in 20-km HIRAM climate model. Terr. Atmos. Oceanic Sci., 27, 687703, https://doi.org/10.3319/TAO.2016.06.13.04.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., and P. J. Kocin, 1987: The interaction of jet streak circulations during heavy snow events along the east coast of the United States. Wea. Forecasting, 2, 289308, https://doi.org/10.1175/1520-0434(1987)002<0289:TIOJSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and Coauthors, 2015: The Met Office Global Coupled model 2.0 (GC2) configuration. Geosci. Model Dev., 8, 15091524, https://doi.org/10.5194/gmd-8-1509-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, https://doi.org/10.1175/2009JCLI3049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 648 173 9
PDF Downloads 453 90 2