• Amaya, D. J., N. Siler, S.-P. Xie, and A. J. Miller, 2018: The interplay of internal and forced modes of Hadley cell expansion: Lessons from the global warming hiatus. Climate Dyn., 51, 305319, https://doi.org/10.1007/s00382-017-3921-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnier, B., and et al. , 2007: Eddy-permitting ocean circulation hindcasts of past decades. CLIVAR Exchanges, No. 42, International CLIVAR Project Office, Southampton, United Kingdom, 8–10.

  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr., 23, 13631388, https://doi.org/10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouttes, N., and J. Gregory, 2014: Attribution of the spatial pattern of CO2-forced sea level change to ocean surface flux changes. Environ. Res. Lett., 9, 034004, https://doi.org/10.1088/1748-9326/9/3/034004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caesar, L., S. Rahmstorf, A. Robinson, G. Feulner, and V. Saba, 2018: Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556, 191196, https://doi.org/10.1038/s41586-018-0006-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., W. Liu, and G. Wang, 2019: Understanding the uncertainty in the 21st century dynamic sea level projections: The role of the AMOC. Geophys. Res. Lett., 46, 210217, https://doi.org/10.1029/2018GL080676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheon, W. G., Y.-G. Park, S.-W. Yeh, and B.-M. Kim, 2012: Atmospheric impact on the northwestern Pacific under a global warming scenario. Geophys. Res. Lett., 39, L16709, https://doi.org/10.1029/2012GL052364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and et al. , 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Ezer, T., L. P. Atkinson, W. B. Corlett, and J. L. Blanco, 2013: Gulf Stream’s induced sea level rise and variability along the U.S. mid-Atlantic coast. J. Geophys. Res. Oceans, 118, 685697, https://doi.org/10.1002/jgrc.20091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, X., X.-H. Zhu, Q.-S. Wu, and D. Huang, 2012: The Kuroshio nutrient stream and its temporal variation in the East China Sea. J. Geophys. Res., 117, C01026, https://doi.org/10.1029/2011JC007292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakkinen, S., P. B. Rhines, and D. L. Worthen, 2016: Warming of the global ocean: Spatial structure and water mass trends. J. Climate, 29, 49494963, https://doi.org/10.1175/JCLI-D-15-0607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate, G. Siedler et al., Eds., International Geophysics Series, Elsevier, 373–386.

    • Search Google Scholar
    • Export Citation
  • Hu, D., and et al. , 2015: Pacific western boundary currents and their roles in climate. Nature, 522, 299308, https://doi.org/10.1038/nature14504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imawaki, S., A. S. Bower, L. Beal, and B. Qiu, 2013: Western boundary currents. Ocean Circulation and Climate: A 21st Century Perspective, 2nd ed., G. Siedler et al., Eds., Academic Press, 305–338.

    • Crossref
    • Export Citation
  • Large, W. G., and S. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levermann, A., A. Griesel, M. Hofmann, M. Montoya, and S. Rahmstorf, 2005: Dynamic sea level changes following changes in the thermohaline circulation. Climate Dyn., 24, 347354, https://doi.org/10.1007/s00382-004-0505-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J.-W., S.-P. Zhang, and S.-P. Xie, 2013: Two types of surface wind response to the East China Sea Kuroshio front. J. Climate, 26, 86168627, https://doi.org/10.1175/JCLI-D-12-00092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., and H. Hu, 2007: A subsurface pathway for low potential vorticity transport from the central North Pacific toward Taiwan Island. Geophys. Res. Lett., 34, L12710, https://doi.org/10.1029/2007GL029510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., and Z. Liu, 2013: A diagnostic indicator of the stability of the Atlantic meridional overturning circulation in CCSM3. J. Climate, 26, 19261938, https://doi.org/10.1175/JCLI-D-11-00681.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., and Z. Liu, 2014: A note on the stability indicator of Atlantic meridional overturning circulation. J. Climate, 27, 969975, https://doi.org/10.1175/JCLI-D-13-00181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., Z. Liu, and E. Brady, 2014: Why is the AMOC monostable in coupled general circulation models? J. Climate, 27, 24272443, https://doi.org/10.1175/JCLI-D-13-00264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., S.-P. Xie, Z. Liu, and J. Zhu, 2017: Overlooked possibility of a collapsed Atlantic meridional overturning circulation in warming climate. Sci. Adv., 3, e1601666, https://doi.org/10.1126/sciadv.1601666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, https://doi.org/10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., L. M. Rothstein, and R.-H. Zhang, 2009: Response of Pacific subtropical–tropical thermocline water pathways and transport to global warming. Geophys. Res. Lett., 36, L04601, https://doi.org/10.1029/2008GL036705.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Note du Pôle de modélisation 27, Institut Pierre-Simon Laplace, 209 pp.

  • Marshall, J., J. Scott, K. Armour, J.-M. Campin, M. Kelley, and A. Romanou, 2015: The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Climate Dyn., 44, 22872299, https://doi.org/10.1007/s00382-014-2308-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., M. Terada, B. Qiu, and N. Schneider, 2017: Western boundary sea level: A theory, rule of thumb, and application to climate models. J. Phys. Oceanogr., 47, 957977, https://doi.org/10.1175/JPO-D-16-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., A. Nishina, and S. Minobe, 2012: Response of storm tracks to bimodal Kuroshio path states south of Japan. J. Climate, 25, 77727779, https://doi.org/10.1175/JCLI-D-12-00326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitani, H., 1972: Beginning of the Kuroshio. Kuroshio—Its Physical Aspects, H. Stommel and K. Yoshida, Eds., University of Tokyo Press, 129–163.

  • Oka, E., S. Kouketsu, K. Toyama, K. Uehara, T. Kobayashi, S. Hosoda, and T. Suga, 2011: Formation and subduction of central mode water based on profiling float data, 2003–08. J. Phys. Oceanogr., 41, 113129, https://doi.org/10.1175/2010JPO4419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palter, J. B., 2015: The role of the Gulf Stream in European climate. Annu. Rev. Mar. Sci., 7, 113137, https://doi.org/10.1146/annurev-marine-010814-015656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and R. Lukas, 1996: Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. J. Geophys. Res., 101, 12 31512 330, https://doi.org/10.1029/95JC03204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35, 20902103, https://doi.org/10.1175/JPO2807.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., J. E. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht, 2015: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Climate Change, 5, 475480, https://doi.org/10.1038/nclimate2554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakamoto, T. T., H. Hasumi, M. Ishii, S. Emori, T. Suzuki, T. Nishimura, and A. Sumi, 2005: Responses of the Kuroshio and the Kuroshio Extension to global warming in a high-resolution climate model. Geophys. Res. Lett., 32, L14617, https://doi.org/10.1029/2005GL023384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., S. Minobe, T. Asai, and M. Inatsu, 2012: Influence of the Kuroshio in the East China Sea on the early summer (baiu) rain. J. Climate, 25, 66276645, https://doi.org/10.1175/JCLI-D-11-00727.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., S. Minobe, and Y. Miura, 2014: Decadal sea-level variability along the coast of Japan in response to ocean circulation changes. J. Geophys. Res. Oceans, 119, 266275, https://doi.org/10.1002/2013JC009327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, https://doi.org/10.1038/ngeo.2007.38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smeed, D. A., and et al. , 2018: The North Atlantic Ocean is in a state of reduced overturning. Geophys. Res. Lett., 45, 15271533, https://doi.org/10.1002/2017GL076350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srokosz, M., M. Baringer, H. Bryden, S. Cunningham, T. Delworth, S. Lozier, J. Marotzke, and R. Sutton, 2012: Past, present, and future changes in the Atlantic meridional overturning circulation. Bull. Amer. Meteor. Soc., 93, 16631676, https://doi.org/10.1175/BAMS-D-11-00151.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1948: The westward intensification of wind-driven ocean currents. Eos, Trans. Amer. Geophys. Union, 29, 202206, https://doi.org/10.1029/TR029i002p00202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., L. Wu, and B. Qiu, 2013: Response of the inertial recirculation to intensified stratification in a two-layer quasigeostrophic ocean circulation model. J. Phys. Oceanogr., 43, 12541269, https://doi.org/10.1175/JPO-D-12-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, K., M. Ikeda, and Y. Masumoto, 2004: Predictability of interannual variability in the Kuroshio transport south of Japan based on wind stress data over the North Pacific. J. Oceanogr., 60, 283291, https://doi.org/10.1023/B:JOCE.0000038334.86069.ea.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terada, M., and S. Minobe, 2018: Projected sea level rise, gyre circulation and water mass formation in the western North Pacific: CMIP5 inter-model analysis. Climate Dyn., 50, 47674782, https://doi.org/10.1007/s00382-017-3902-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., S.-P. Xie, R. Huang, and C. Chen, 2015: Robust warming pattern of global subtropical oceans and its mechanism. J. Climate, 28, 85748584, https://doi.org/10.1175/JCLI-D-14-00809.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-R., Y.-L. Chang, L.-Y. Oey, C.-W. J. Chang, and Y.-C. Hsin, 2008: Air–sea interaction between tropical cyclone Nari and Kuroshio. Geophys. Res. Lett., 35, L12605, https://doi.org/10.1029/2008GL033942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and et al. , 2012: Enhanced warming over the global subtropical western boundary currents. Nat. Climate Change, 2, 161166, https://doi.org/10.1038/nclimate1353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2011: The decadal mean ocean circulation and Sverdrup balance. J. Mar. Res., 69, 417434, https://doi.org/10.1357/002224011798765303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., T. Kunitani, A. Kubokawa, M. Nonaka, and S. Hosoda, 2000: Interdecadal thermocline variability in the North Pacific for 1958–97: A GCM simulation. J. Phys. Oceanogr., 30, 27982813, https://doi.org/10.1175/1520-0485(2000)030<2798:ITVITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., J. Hafner, Y. Tanimoto, W. T. Liu, H. Tokinaga, and H. Xu, 2002: Bathymetric effect on the winter sea surface temperature and climate of the Yellow and East China Seas. Geophys. Res. Lett., 29, 2228, https://doi.org/10.1029/2002GL015884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., L. Xu, Q. Liu, and F. Kobashi, 2011: Dynamical role of mode water ventilation in decadal variability in the central subtropical gyre of the North Pacific. J. Climate, 24, 12121225, https://doi.org/10.1175/2010JCLI3896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H., M. Xu, S.-P. Xie, and Y. Wang, 2011: Deep atmospheric response to the spring Kuroshio over the East China Sea. J. Climate, 24, 49594972, https://doi.org/10.1175/JCLI-D-10-05034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L. X., S.-P. Xie, and Q. Liu, 2012: Mode water ventilation and subtropical countercurrent over the North Pacific in CMIP5 simulations and future projections. J. Geophys. Res. Oceans, 117, C12009, https://doi.org/10.1029/2012JC008377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., G. Lohmann, W. Wei, M. Dima, M. Ionita, and J. Liu, 2016: Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. Oceans, 121, 49284945, https://doi.org/10.1002/2015JC011513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J., M. E. Schlesinger, and R. J. Stouffer, 2009: Model projections of rapid sea-level rise on the northeast coast of the United States. Nat. Geosci., 2, 262266, https://doi.org/10.1038/ngeo462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. A. Church, S. M. Plattern, and D. Monselesan, 2014: Projection of subtropical gyre circulation and associated sea level changes in the Pacific based on CMIP3 climate models. Climate Dyn., 43, 131144, https://doi.org/10.1007/s00382-013-1902-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 662 662 163
PDF Downloads 595 595 158

Why Does Global Warming Weaken the Gulf Stream but Intensify the Kuroshio?

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China, and Department of Earth and Planetary Sciences, University of California, Riverside, Riverside, California
  • | 2 Department of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, and Big Data Institute for Carbon Emission and Environmental Pollution, Fudan University, Shanghai, China
  • | 3 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 4 Department of Earth and Planetary Sciences, University of California, Riverside, Riverside, California
© Get Permissions
Restricted access

ABSTRACT

The Kuroshio and Gulf Stream, the subtropical western boundary currents of the North Pacific and North Atlantic, play important roles in meridional heat transport and ocean–atmosphere interaction processes. Using a multimodel ensemble of future projections, we show that a warmer climate intensifies the upper-layer Kuroshio, in contrast to the previously documented slowdown of the Gulf Stream. Our ocean general circulation model experiments show that the sea surface warming, not the wind change, is the dominant forcing that causes the upper-layer Kuroshio to intensify in a warming climate. Forced by the sea surface warming, ocean subduction and advection processes result in a stronger warming to the east of the Kuroshio than to the west, which increases the isopycnal slope across the Kuroshio, and hence intensifies the Kuroshio. In the North Atlantic, the Gulf Stream slows down as part of the Atlantic meridional overturning circulation (AMOC) response to surface salinity decrease in the high latitudes under global warming. The distinct responses of the Gulf Stream and Kuroshio to climate warming are accompanied by different regional patterns of sea level rise. While the sea level rise accelerates along the northeastern U.S. coast as the AMOC weakens, it remains close to the global mean rate along the East Asian coast as the intensifying Kuroshio is associated with the enhanced sea level rise offshore in the North Pacific subtropical gyre.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Changlin Chen, chencl@fudan.edu.cn

ABSTRACT

The Kuroshio and Gulf Stream, the subtropical western boundary currents of the North Pacific and North Atlantic, play important roles in meridional heat transport and ocean–atmosphere interaction processes. Using a multimodel ensemble of future projections, we show that a warmer climate intensifies the upper-layer Kuroshio, in contrast to the previously documented slowdown of the Gulf Stream. Our ocean general circulation model experiments show that the sea surface warming, not the wind change, is the dominant forcing that causes the upper-layer Kuroshio to intensify in a warming climate. Forced by the sea surface warming, ocean subduction and advection processes result in a stronger warming to the east of the Kuroshio than to the west, which increases the isopycnal slope across the Kuroshio, and hence intensifies the Kuroshio. In the North Atlantic, the Gulf Stream slows down as part of the Atlantic meridional overturning circulation (AMOC) response to surface salinity decrease in the high latitudes under global warming. The distinct responses of the Gulf Stream and Kuroshio to climate warming are accompanied by different regional patterns of sea level rise. While the sea level rise accelerates along the northeastern U.S. coast as the AMOC weakens, it remains close to the global mean rate along the East Asian coast as the intensifying Kuroshio is associated with the enhanced sea level rise offshore in the North Pacific subtropical gyre.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Changlin Chen, chencl@fudan.edu.cn
Save