• Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913941, https://doi.org/10.1175/JAS-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., J. M. Wallace, and J. M. Monteiro, 2016: Seasonality of the structure and propagation characteristics of the MJO. J. Atmos. Sci., 73, 35113526, https://doi.org/10.1175/JAS-D-15-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahn, M.-S., D. Kim, K. R. Sperber, I.-S. Kang, E. Maloney, D. Waliser, and H. Hendon, 2017: MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis. Climate Dyn., 49, 40234045, https://doi.org/10.1007/s00382-017-3558-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, https://doi.org/10.1175/JCLI-D-11-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. Behera, S. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and et al. , 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

  • Baquero-Bernal, A., M. Latif, and S. Legutke, 2002: On dipolelike variability of sea surface temperature in the tropical Indian Ocean. J. Climate, 15, 13581368, https://doi.org/10.1175/1520-0442(2002)015<1358:ODVOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., 1977: Viscous internal gravity waves and low-frequency oscillations in the tropics. J. Atmos. Sci., 34, 901910, https://doi.org/10.1175/1520-0469(1977)034<0901:VIGWAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and B. Wang, 2018a: Effects of enhanced front Walker cell on the eastward propagation of the MJO. J. Climate, 31, 77197738, https://doi.org/10.1175/JCLI-D-17-0383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and B. Wang, 2018b: Does the MJO have a westward group velocity? J. Climate, 31, 24352443, https://doi.org/10.1175/JCLI-D-17-0446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., C. Li, and Y. Tan, 2015: The influences of El Niño on MJO over the equatorial Pacific. J. Ocean Univ. China, 14, 18, https://doi.org/10.1007/S11802-015-2381-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., J. Ling, and C. Li, 2016: Evolution of the Madden–Julian oscillation in two types of El Niño. J. Climate, 29, 19191934, https://doi.org/10.1175/JCLI-D-15-0486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., N. P. Klingaman, and S. J. Woolnough, 2015: Atmosphere–ocean coupled processes in the Madden-Julian oscillation. Rev. Geophys., 53, 10991154, https://doi.org/10.1002/2014RG000478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., T. Li, and W. Zhu, 2015: Propagating and nonpropagating MJO events over the Maritime Continent. J. Climate, 28, 84308449, https://doi.org/10.1175/JCLI-D-15-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freeman, E., and et al. , 2017: ICOADS release 3.0: A major update to the historical marine climate record. Int. J. Climatol., 37, 22112232, https://doi.org/10.1002/joc.4775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., and B. Wang, 2001: A coupled modeling study of the seasonal cycle of the Pacific cold tongue. Part I: Simulation and sensitivity experiments. J. Climate, 14, 765779, https://doi.org/10.1175/1520-0442(2001)014<0765:ACMSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., W. Wang, H.-L. Ren, X. Jia, and T. Shinoda, 2018: Three different downstream fates of the boreal-summer MJOs on their passages over the Maritime Continent. Climate Dyn., 51, 18411862, https://doi.org/10.1007/s00382-017-3985-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, X., W. Zhang, M. F. Stuecker, and F. F. Jin, 2017: Strong sub-seasonal wintertime cooling over East Asia and northern Europe associated with super El Niño events. Sci. Rep., 7, 3770, https://doi.org/10.1038/s41598-017-03977-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez, A. O., and X. Jiang, 2017: Winter mean lower tropospheric moisture over the Maritime Continent as a climate model diagnostic metric for the propagation of the Madden-Julian oscillation. Geophys. Res. Lett., 44, 25882596, https://doi.org/10.1002/2016GL072430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goulet, L., and J.-P. Duvel, 2000: A new approach to detect and characterize intermittent atmospheric oscillations: Application to the intraseasonal oscillation. J. Atmos. Sci., 57, 23972416, https://doi.org/10.1175/1520-0469(2000)057<2397:ANATDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, B. M., 1988: Seasonal frequency variation in the 40–50 day oscillation. J. Climatol., 8, 511519, https://doi.org/10.1002/joc.3370080507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., D. E. Waliser, and X. Jiang, 2015: A systematic relationship between the representations of convectively coupled equatorial wave activity and the Madden–Julian oscillation in climate model simulations. J. Climate, 28, 18811904, https://doi.org/10.1175/JCLI-D-14-00485.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., 2005: Origins and dynamics of the 90-day and 30–60-day variations in the equatorial Indian Ocean. J. Phys. Oceanogr., 35, 708728, https://doi.org/10.1175/JPO2725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hao, X., H.-L. Ren, W. Zhang, M. Liu, and Y. Wei, 2019: Diagnosing the spatiotemporal diversity of westerly wind events in the tropical Pacific. Dyn. Atmos. Oceans, 86, 90103, https://doi.org/10.1016/j.dynatmoce.2019.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., and E. D. Maloney, 2018: The impact of the Madden-Julian oscillation on high-latitude winter blocking during El Niño–Southern Oscillation events. J. Climate, 31, 52935318, https://doi.org/10.1175/JCLI-D-17-0721.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., M. C. Wheeler, and C. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531543, https://doi.org/10.1175/JCLI4003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 49144931, https://doi.org/10.1175/JCLI-D-11-00310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., and T. Xiao, 2017: Differences in the initiation and development of the Madden–Julian oscillation over the Indian Ocean associated with two types of El Niño. J. Climate, 30, 13971415, https://doi.org/10.1175/JCLI-D-16-0336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T. Li, and H. Murakami, 2014: Moisture asymmetry and MJO eastward propagation in an aquaplanet general circulation model. J. Climate, 27, 87478760, https://doi.org/10.1175/JCLI-D-14-00148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and et al. , 2015: Extended reconstructed sea surface temperature version 4 (ERSST. v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and et al. , 2016: Further exploring and quantifying uncertainties for extended reconstructed sea surface temperature (ERSST) version 4 (v4). J. Climate, 29, 31193142, https://doi.org/10.1175/JCLI-D-15-0430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and et al. , 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hung, C.-S., and C.-H. Sui, 2018: A diagnostic study of the evolution of the MJO from Indian Ocean to Maritime Continent: Wave dynamics versus advective moistening processes. J. Climate, 31, 40954115, https://doi.org/10.1175/JCLI-D-17-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., and et al. , 2010: Low and high frequency Madden–Julian oscillations in austral summer: Interannual variations. Climate Dyn., 35, 669683, https://doi.org/10.1007/s00382-009-0655-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., 2017: Key processes for the eastward propagation of the Madden–Julian oscillation based on multimodel simulations. J. Geophys. Res. Atmos., 122, 755770, https://doi.org/10.1002/2016JD025955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and et al. , 2015: Vertical structure and physical processes of the Madden–Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res., 120, 47184748, https://doi.org/10.1002/2014JD022375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., Á. F. Adames, M. Zhao, and E. Maloney, 2018: A unified moisture mode framework for seasonality of the Madden–Julian oscillation. J. Climate, 31, 42154224, https://doi.org/10.1175/JCLI-D-17-0671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., F. Liu, M.-S. Ahn, Y.-M. Yang, and B. Wang, 2013: The role of SST structure in convectively coupled Kelvin–Rossby waves and its implications for MJO formation. J. Climate, 26, 59155930, https://doi.org/10.1175/JCLI-D-12-00303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and et al. , 2014: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 16971715, https://doi.org/10.1175/MWR-D-13-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., and et al. , 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436, https://doi.org/10.1175/2009JCLI3063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., J.-S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, https://doi.org/10.1175/JCLI-D-13-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., H. Kim, and M. I. Lee, 2017: Why does the MJO detour the Maritime Continent during austral summer? Geophys. Res. Lett., 44, 25792587, https://doi.org/10.1002/2017GL072643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiranmayi, L., and E. D. Maloney, 2011: Intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res., 116, D21117, https://doi.org/10.1029/2011JD016031.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22, 4063, https://doi.org/10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., V. A. Semenov, and W. Park, 2015: Super El Niños in response to global warming in a climate model. Climatic Change, 132, 489500, https://doi.org/10.1007/s10584-015-1439-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and P. Chan, 1986a: Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 13541367, https://doi.org/10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and P. Chan, 1986b: The 40–50 day oscillation and the El Niño/Southern Oscillation: A new perspective. Bull. Amer. Meteor. Soc., 67, 533534, https://doi.org/10.1175/1520-0477(1986)067<0533:TDOATE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and D. E. Waliser, 2012: Intraseasonal Variability in the Atmosphere–Ocean Climate System. 2nd ed. Springer, 613 pp.

    • Crossref
    • Export Citation
  • Li, C., and I. Smith, 1995: Numerical simulation of the tropical intraseasonal oscillation and the effect of warm SST. Acta Meteor. Sin., 9, 112.

    • Search Google Scholar
    • Export Citation
  • Li, J., and J. Mao, 2019: Factors controlling the interannual variation of 30-60-day boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 52, 16511672, https://doi.org/10.1007/s00382-018-4216-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., 2014: Recent advance in understanding the dynamics of the Madden–Julian Oscillation. J. Meteor. Res., 28, 133, https://doi.org/10.1007/S13351-014-3087-6.

    • Search Google Scholar
    • Export Citation
  • Li, T., F. Tam, X. Fu, T. Zhou, and W. Zhu, 2008: Causes of the intraseasonal SST variability in the tropical Indian Ocean. Atmos. Oceanic Sci. Lett., 1, 1823, https://doi.org/10.1080/16742834.2008.11446758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Ling, J., C. Zhang, and P. Bechtold, 2013: Large-scale distinctions between MJO and non-MJO convective initiation over the tropical Indian Ocean. J. Atmos. Sci., 70, 26962712, https://doi.org/10.1175/JAS-D-13-029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, J., C. Zhang, S. Wang, and C. Li, 2017: A new interpretation of the ability of global models to simulate the MJO. Geophys. Res. Lett., 44, 57985806, https://doi.org/10.1002/2017GL073891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., B. Tian, K.-F. Li, G. L. Manney, N. J. Livesey Y. L. Yung, and D. E. Waliser, 2014: Northern Hemisphere mid-winter vortex-displacement and vortex-split stratospheric sudden warmings: Influence of the Madden–Julian oscillation and quasi-biennial oscillation. J. Geophys. Res., 119, 12 59912 620, https://doi.org/10.1002/2014JD021876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., and B. Wang, 2013: An air–sea coupled skeleton model for the Madden–Julian Oscillation. J. Atmos. Sci., 70, 31473156, https://doi.org/10.1175/JAS-D-12-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., and B. Wang, 2016: Role of horizontal advection of seasonal-mean moisture in in Madden–Julian oscillation: A theoretical model analysis. J. Climate, 29, 62776293, https://doi.org/10.1175/JCLI-D-16-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., and B. Wang, 2017a: Effects of moisture feedback in a frictional coupled Kelvin-Rossby wave model and implication in the Madden–Julian oscillation dynamics. Climate Dyn., 48, 513522, https://doi.org/10.1007/s00382-016-3090-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., and B. Wang, 2017b: Roles of the moisture and wave feedbacks in shaping the Madden–Julian oscillation. J. Climate, 30, 10 27510 291, https://doi.org/10.1175/JCLI-D-17-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., T. Li, H. Wang, L. Deng, and Y. Zhang, 2016: Modulation of boreal summer intraseasonal oscillations over the western North Pacific by ENSO. J. Climate, 29, 71897201, https://doi.org/10.1175/JCLI-D-15-0831.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2006: The effect of the MJO on the North American monsoon. J. Climate, 19, 333343, https://doi.org/10.1175/JCLI3684.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, https://doi.org/10.1175/2008JCLI2542.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian oscillation. Science, 287, 20022004, https://doi.org/10.1126/science.287.5460.2002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., H. H. Hendon, S. W. Son, and Y. Lim, 2017: Impact of the quasi-biennial oscillation on predictability of the Madden–Julian oscillation. Climate Dyn., 49, 13651377, https://doi.org/10.1007/s00382-016-3392-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2008: Primary and successive events in the Madden–Julian Oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453, https://doi.org/10.1002/qj.224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997-98 El Niño. Science, 283, 950954, https://doi.org/10.1126/science.283.5404.950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, J.-Y., B. Wang, and K.-J. Ha, 2011: ENSO regulation of MJO teleconnection. Climate Dyn., 37, 11331149, https://doi.org/10.1007/s00382-010-0902-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neena, J. M., J. Y. Lee, D. Waliser, B. Wang, and X. Jiang, 2014: Predictability of the Madden–Julian oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE). J. Climate, 27, 45314543, https://doi.org/10.1175/JCLI-D-13-00624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishimoto, E., and S. Yoden, 2017: Influence of the stratospheric quasi-biennial oscillation on the Madden–Julian oscillation during austral summer. J. Atmos. Sci., 74, 11051125, https://doi.org/10.1175/JAS-D-16-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petch, J., D. Waliser, X. Jiang, P. Xavier, and S. Woolnough, 2011: A global model intercomparison of the physical processes associated with the Madden–Julian oscillation. GEWEX News, No. 21, International GEWEX Project Office, Silver Spring, MD, 3–5.

  • Pillai, P. A., and J. S. Chowdary, 2016: Indian summer monsoon intra-seasonal oscillation associated with the developing and decaying phase of El Niño. Int. J. Climatol., 36, 18461862, https://doi.org/10.1002/joc.4464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pohl, B., and A. J. Matthews, 2007: Observed changes in the lifetime and amplitude of the Madden–Julian oscillation associated with interannual ENSO sea surface temperature anomalies. J. Climate, 20, 26592674, https://doi.org/10.1175/JCLI4230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, J., and R. Ren, 2016: Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 1. Observations. J. Geophys. Res. Atmos., 121, 90009016, https://doi.org/10.1002/2015JD024520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, https://doi.org/10.1029/2010GL046031.

  • Ren, H.-L., and P. Ren, 2017: Impact of Madden–Julian oscillation upon winter extreme rainfall in southern China: Observations and predictability in CFSv2. Atmosphere, 8, 192, https://doi.org/10.3390/atmos8100192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., and et al. , 2019: Seasonal predictability of winter ENSO types in operational dynamical model predictions. Climate Dyn., 52, 38693890, https://doi.org/10.1007/S00382-018-4366-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, P., H.-L. Ren, X. Fu, J. Wu, and L. Du, 2018: Impact of boreal summer intraseasonal oscillation on rainfall extremes in southeastern China and its predictability in CFSv2. J. Geophys. Res. Atmos., 123, 44234442, https://doi.org/10.1029/2017JD028043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and et al. , 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max Planck Institute for Meteorology Rep. 218, 90 pp.

  • Roundy, P. E., 2008: Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. J. Atmos. Sci., 65, 13421359, https://doi.org/10.1175/2007JAS2345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., S. P. Xie, and C. Y. Tam, 2006: Satellite observations of intense intraseasonal cooling events in the tropical south Indian Ocean. Geophys. Res. Lett., 33, L14704, https://doi.org/10.1029/2006GL026525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K. H., and A. Kumar, 2008: The onset and life span of the Madden–Julian oscillation. Theor. Appl. Climatol., 94, 1324, https://doi.org/10.1007/s00704-007-0340-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, T., and W. Han, 2005: Influence of the Indian Ocean dipole on atmospheric subseasonal variability. J. Climate, 18, 38913909, https://doi.org/10.1175/JCLI3510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, T., M. A. Alexander, and H. H. Hendon, 2004: Remote response of the Indian Ocean to interannual SST variations in the tropical Pacific. J. Climate, 17, 362372, https://doi.org/10.1175/1520-0442(2004)017<0362:RROTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, J., D. Rowell, K. Sperber, and F. Nortley, 1999: On the predictability of the interannual behaviour of the Madden–Julian oscillation and its relationship with El Niño. Quart. J. Roy. Meteor. Soc., 125, 583609, https://doi.org/10.1002/qj.49712555411.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705, https://doi.org/10.1175/JAS-D-11-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, https://doi.org/10.1175/JAS-D-12-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, https://doi.org/10.1175/JAS-D-14-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S. W., and et al. , 2017: Stratospheric control of the Madden–Julian oscillation. J. Climate, 30, 19091922, https://doi.org/10.1175/JCLI-D-16-0620.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., 2013: MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 11301151, https://doi.org/10.1175/JCLI-D-12-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suematsu, T., and H. Miura, 2018: Zonal SST differences as a potential environmental factor supporting the longevity of the Madden–Julian oscillation. J. Climate, 31, 75497564, https://doi.org/10.1175/JCLI-D-17-0822.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., H. Wang, and F. Liu, 2019: Combined effect of the QBO and ENSO on the MJO. Atmos. Oceanic Sci. Lett., 12, 170176, https://doi.org/10.1080/16742834.2019.1588064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and et al. , 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Titchner, H. A., and N. A. Rayner, 2014: The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J. Geophys. Res., 119, 28642889, https://doi.org/10.1002/2013JD020316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., 1988: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45, 20512065, https://doi.org/10.1175/1520-0469(1988)045<2051:DOTLFW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial β-plane. J. Atmos. Sci., 47, 397413, https://doi.org/10.1175/1520-0469(1990)047<0397:DOTCMK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1998: Coupled modes of the warm pool climate system. Part I: The role of air–sea interaction in maintaining Madden–Julian oscillation. J. Climate, 11, 21162135, https://doi.org/10.1175/1520-0442-11.8.2116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and G. Chen, 2016: A general theoretical framework for understanding essential dynamics of Madden–Julian oscillation. Climate Dyn., 49, 23092238, https://doi.org/10.1007/s00382-016-3448-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and S.-S. Lee, 2017: MJO propagation shaped by zonal asymmetric structures: Results from 24 GCM simulations. J. Climate, 30, 79337952, https://doi.org/10.1175/JCLI-D-16-0873.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., T. Li, and P. Chang, 1995: An intermediate model of the tropical Pacific Ocean. J. Phys. Oceanogr., 25, 15991616, https://doi.org/10.1175/1520-0485(1995)025<1599:AIMOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., F. Liu, and G. Chen, 2016: A trio-interaction theory for Madden–Julian oscillation. Geosci. Lett., 3, 34, https://doi.org/10.1186/s40562-016-0066-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and et al. , 2018: Dynamics-oriented diagnostics for the Madden–Julian oscillation. J. Climate, 31, 31173135, https://doi.org/10.1175/JCLI-D-17-0332.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., G. Chen, and F. Liu, 2019: Diversity of the Madden–Julian oscillation. Sci. Adv., 5, eaax0220,https://doi.org/10.1126/SCIADV.AAX0220.

  • Wang, L., T. Li, E. Maloney, and B. Wang, 2017: Fundamental causes of propagating and nonpropagating MJOs in MJOTF/GASS models. J. Climate, 30, 37433769, https://doi.org/10.1175/JCLI-D-16-0765.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., T. Li, L. Chen, S. K. Behera, and T. Nasuno, 2018a: Modulation of the MJO intensity over the equatorial western Pacific by two types of El Niño. Climate Dyn., 51, 687700, https://doi.org/10.1007/s00382-017-3949-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., T. Li, and T. Nasuno, 2018b: Impact of Rossby and Kelvin wave components on MJO eastward propagation. J. Climate, 31, 69136931, https://doi.org/10.1175/JCLI-D-17-0749.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, Y., F. Liu, H.-L. Ren, and M. Mu, 2018: Planetary-scale selection of the Madden–Julian oscillation in an air–sea coupled dynamical moisture model. Climate Dyn., 50, 34413456, https://doi.org/10.1007/s00382-017-3816-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, Y., M. Mu, H.-L. Ren, and J.-X. Fu, 2019: Conditional nonlinear optimal perturbations of moisture triggering primary MJO initiation. Geophys. Res. Lett., 46, 34923501, https://doi.org/10.1029/2018GL081755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weickmann, K., 1991: El Niño/Southern Oscillation and Madden–Julian (30–60 day) oscillations during 1981–1982. J. Geophys. Res., 96, 31873195, https://doi.org/10.1029/90JD01832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, E. A., A. L. Gordon, and D. Kim, 2013: Observations of the Madden–Julian oscillation during Indian Ocean dipole events. J. Geophys. Res. Atmos., 118, 25882599, https://doi.org/10.1002/JGRD.50241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and L. Song, 2018: Spatiotemporal change of intraseasonal oscillation intensity over the tropical Indo-Pacific Ocean associated with El Niño and La Niña events. Climate Dyn., 50, 12211242, https://doi.org/10.1007/s00382-017-3675-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yadav, P., and D. M. Straus, 2017: Circulation response to fast and slow MJO episodes. Mon. Wea. Rev., 145, 15771596, https://doi.org/10.1175/MWR-D-16-0352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud cluster from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yong, Y., and J. Mao, 2016: Mechanistic analysis of the suppressed convective anomaly precursor associated with the initiation of primary MJO events over the tropical Indian Ocean. Climate Dyn., 46, 779795, https://doi.org/10.1007/s00382-015-2612-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, C., and S. W. Son, 2016: Modulation of the boreal wintertime Madden–Julian oscillation by the stratospheric quasi-biennial oscillation. Geophys. Res. Lett., 43, 13921398, https://doi.org/10.1002/2016GL067762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., C. Li, and J. Ling, 2015: Different MJO activities between EP El Niño and CP El Niño (in Chinese). Sci. Sin. Terr., 45, 318334.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden–Julian oscillation in the equatorial Pacific. J. Climate, 15, 24292445, https://doi.org/10.1175/1520-0442(2002)015<2429:SAOEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Ling, 2017: Barrier effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. J. Climate, 30, 34393459, https://doi.org/10.1175/JCLI-D-16-0614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and B. Zhang, 2018: QBO–MJO connection. J. Geophys. Res., 123, 29572967, https://doi.org/10.1002/2017JD028171.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 252 252 54
PDF Downloads 249 249 49

Modulation of ENSO on Fast and Slow MJO Modes during Boreal Winter

View More View Less
  • 1 Laboratory for Climate Studies and China Meteorological Administration–Nanjing University Joint Laboratory for Climate Prediction Studies, National Climate Center, China Meteorological Administration, Beijing, and Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, and University of Chinese Academy of Sciences, Beijing, China
  • | 2 Laboratory for Climate Studies and China Meteorological Administration–Nanjing University Joint Laboratory for Climate Prediction Studies, National Climate Center, China Meteorological Administration, Beijing, China
© Get Permissions
Restricted access

Abstract

This study investigates modulation of El Niño–Southern Oscillation (ENSO) on the Madden–Julian oscillation (MJO) propagation during boreal winter. Results show that the spatiotemporal evolution of MJO manifests as a fast equatorially symmetric propagation from the Indian Ocean to the equatorial western Pacific (EWP) during El Niño, whereas the MJO during La Niña is very slow and tends to frequently “detour” via the southern Maritime Continent (MC). The westward group velocity of the MJO is also more significant during El Niño. Based on the dynamics-oriented diagnostics, it is found that, during El Niño, the much stronger leading suppressed convection over the EWP excites a significant front Walker cell, which further triggers a larger Kelvin wave easterly wind anomaly and premoistening and heating effects to the east. However, the equatorial Rossby wave to the west tends to decouple with the MJO convection. Both effects can result in fast MJO propagation. The opposite holds during La Niña. A column-integrated moisture budget analysis reveals that the sea surface temperature anomaly driving both the eastward and equatorward gradients of the low-frequency moisture anomaly during El Niño, as opposed to the westward and poleward gradients during La Niña, induces moist advection over the equatorial eastern MC–EWP region due to the intraseasonal wind anomaly and therefore enhances the zonal asymmetry of the moisture tendency, supporting fast propagation. The role of nonlinear advection by synoptic-scale Kelvin waves is also nonnegligible in distinguishing fast and slow MJO modes. This study emphasizes the crucial roles of dynamical wave feedback and moisture–convection feedback in modulating the MJO propagation by ENSO.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hong-Li Ren, renhl@cma.gov.cn

Abstract

This study investigates modulation of El Niño–Southern Oscillation (ENSO) on the Madden–Julian oscillation (MJO) propagation during boreal winter. Results show that the spatiotemporal evolution of MJO manifests as a fast equatorially symmetric propagation from the Indian Ocean to the equatorial western Pacific (EWP) during El Niño, whereas the MJO during La Niña is very slow and tends to frequently “detour” via the southern Maritime Continent (MC). The westward group velocity of the MJO is also more significant during El Niño. Based on the dynamics-oriented diagnostics, it is found that, during El Niño, the much stronger leading suppressed convection over the EWP excites a significant front Walker cell, which further triggers a larger Kelvin wave easterly wind anomaly and premoistening and heating effects to the east. However, the equatorial Rossby wave to the west tends to decouple with the MJO convection. Both effects can result in fast MJO propagation. The opposite holds during La Niña. A column-integrated moisture budget analysis reveals that the sea surface temperature anomaly driving both the eastward and equatorward gradients of the low-frequency moisture anomaly during El Niño, as opposed to the westward and poleward gradients during La Niña, induces moist advection over the equatorial eastern MC–EWP region due to the intraseasonal wind anomaly and therefore enhances the zonal asymmetry of the moisture tendency, supporting fast propagation. The role of nonlinear advection by synoptic-scale Kelvin waves is also nonnegligible in distinguishing fast and slow MJO modes. This study emphasizes the crucial roles of dynamical wave feedback and moisture–convection feedback in modulating the MJO propagation by ENSO.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hong-Li Ren, renhl@cma.gov.cn
Save