Variability of Sea Level and Upper-Ocean Heat Content in the Indian Ocean: Effects of Subtropical Indian Ocean Dipole and ENSO

Lei Zhang Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Lei Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2431-869X
,
Weiqing Han Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Weiqing Han in
Current site
Google Scholar
PubMed
Close
,
Yuanlong Li Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Yuanlong Li in
Current site
Google Scholar
PubMed
Close
, and
Nicole S. Lovenduski Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Nicole S. Lovenduski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the Indian Ocean upper-ocean variability associated with the subtropical Indian Ocean dipole (SIOD) is investigated. We find that the SIOD is associated with a prominent southwest–northeast sea level anomaly (SLA) dipole over the western-central south Indian Ocean, with the north pole located in the Seychelles–Chagos thermocline ridge (SCTR) and the south pole at southeast of Madagascar, which is different from the distribution of the sea surface temperature anomaly (SSTA). While the thermocline depth and upper-ocean heat content anomalies mirror SLAs, the air–sea CO2 flux anomalies associated with SIOD are controlled by SSTA. In the SCTR region, the westward propagation of oceanic Rossby waves generated by anomalous winds over the eastern tropical Indian Ocean is the major cause for the SLAs, with cyclonic wind causing negative SLAs during positive SIOD (pSIOD). Local wind forcing is the primary driver for the SLAs southeast of Madagascar, with anticyclonic winds causing positive SLAs. Since the SIOD is correlated with ENSO, the relative roles of the SIOD and ENSO are examined. We find that while ENSO can induce significant SLAs in the SCTR region through an atmospheric bridge, it has negligible impact on the SLA to the southeast of Madagascar. By contrast, the SIOD with ENSO influence removed is associated with an opposite SLA in the SCTR and southeast of Madagascar, corresponding to the SLA dipole identified above. A new subtropical dipole mode index (SDMI) is proposed, which is uncorrelated with ENSO and thus better represents the pure SIOD effect.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0167.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lei Zhang, lezh8230@colorado.edu

Abstract

In this study, the Indian Ocean upper-ocean variability associated with the subtropical Indian Ocean dipole (SIOD) is investigated. We find that the SIOD is associated with a prominent southwest–northeast sea level anomaly (SLA) dipole over the western-central south Indian Ocean, with the north pole located in the Seychelles–Chagos thermocline ridge (SCTR) and the south pole at southeast of Madagascar, which is different from the distribution of the sea surface temperature anomaly (SSTA). While the thermocline depth and upper-ocean heat content anomalies mirror SLAs, the air–sea CO2 flux anomalies associated with SIOD are controlled by SSTA. In the SCTR region, the westward propagation of oceanic Rossby waves generated by anomalous winds over the eastern tropical Indian Ocean is the major cause for the SLAs, with cyclonic wind causing negative SLAs during positive SIOD (pSIOD). Local wind forcing is the primary driver for the SLAs southeast of Madagascar, with anticyclonic winds causing positive SLAs. Since the SIOD is correlated with ENSO, the relative roles of the SIOD and ENSO are examined. We find that while ENSO can induce significant SLAs in the SCTR region through an atmospheric bridge, it has negligible impact on the SLA to the southeast of Madagascar. By contrast, the SIOD with ENSO influence removed is associated with an opposite SLA in the SCTR and southeast of Madagascar, corresponding to the SLA dipole identified above. A new subtropical dipole mode index (SDMI) is proposed, which is uncorrelated with ENSO and thus better represents the pure SIOD effect.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0167.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lei Zhang, lezh8230@colorado.edu

Supplementary Materials

    • Supplemental Materials (PDF 502.74 KB)
Save
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013a: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. E. Trenberth, and E. Källén, 2013b: Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 17541759, https://doi.org/10.1002/grl.50382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, N. R., A. C. Pequignet, and C. L. Sabine, 2006: Ocean carbon cycling in the Indian Ocean: 1. Spatiotemporal variability of inorganic carbon and air–sea CO2 gas exchange. Global Biogeochem. Cycles, 20, GB3020, https://doi.org/10.1029/2005GB002491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., and T. Yamagata, 2001: Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett., 28, 327330, https://doi.org/10.1029/2000GL011451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588, https://doi.org/10.1016/S1463-5003(01)00012-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., S. E. Zebiak, and S. C. Dolan, 1986: Experimental forecasts of El Niño. Nature, 321, 827832, https://doi.org/10.1038/321827a0.

  • Chambers, D. P., B. D. Tapley, and R. H. Stewart, 1999: Anomalous warming in the Indian Ocean coincident with El Niño. J. Geophys. Res., 104, 30353047, https://doi.org/10.1029/1998JC900085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2007: Mechanisms of summertime subtropical southern Indian Ocean sea surface temperature variability: On the importance of humidity anomalies and the meridional advection of water vapor. J. Climate, 20, 48354852, https://doi.org/10.1175/JCLI4271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and X. Liu, 1994: Interannual sea level in the northern and eastern Indian Ocean. J. Phys. Oceanogr., 24, 12241235, https://doi.org/10.1175/1520-0485(1994)024<1224:ISLITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and J. Li, 2004: El Niño/La Niña shelf edge flow and Australian western rock lobsters. Geophys. Res. Lett., 31, L11301, https://doi.org/10.1029/2003GL018900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deepa, J. S., C. Gnanaseelan, R. Kakatkar, A. Parekh, and J. S. Chowdary, 2018: The interannual sea level variability in the Indian Ocean as simulated by an ocean general circulation model. Int. J. Climatol., 38, 11321144, https://doi.org/10.1002/joc.5228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deepa, J. S., C. Gnanaseelan, S. Mohapatra, J. S. Chowdary, A. Karmakar, R. Kakatkar, and A. Parekh, 2019: The tropical Indian Ocean decadal sea level response to the Pacific decadal oscillation forcing. Climate Dyn., 52, 50455085, https://doi.org/10.1007/s00382-018-4431-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19 47719 498, https://doi.org/10.1029/2000JC900063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., G. Meyers, and S. Wijffels, 2001: Interannual upper ocean variability in the tropical Indian Ocean. Geophys. Res. Lett., 28, 41514154, https://doi.org/10.1029/2001GL013475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., Y. Li, and G. Meyers, 2004: Multidecadal variations of Fremantle sea level: Footprint of climate variability in the tropical Pacific. Geophys. Res. Lett., 31, L16302, https://doi.org/10.1029/2004GL019947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., M. J. McPhaden, S.-P. Xie, and J. Hafner, 2013: La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep., 3, 1277, https://doi.org/10.1038/SREP01277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., S. McGregor, and M. H. England, 2015: Robustness of the modes of Indo-Pacific sea level variability. Climate Dyn., 45, 12811298, https://doi.org/10.1007/s00382-014-2377-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukumori, I., R. Raghunath, and L.-L. Fu, 1998: Nature of global large-scale sea level variability in relation to atmospheric forcing: A modeling study. J. Geophys. Res., 103, 54935512, https://doi.org/10.1029/97JC02907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gualdi, S., E. Guilyardi, A. Navarra, S. Masina, and P. Delecluse, 2003: The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Climate Dyn., 20, 567582, https://doi.org/10.1007/s00382-002-0295-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., G. A. Meehl, and A. Hu, 2006: Interpretation of tropical thermocline cooling in the Indian and Pacific Oceans during recent decades. Geophys. Res. Lett., 33, L23615, https://doi.org/10.1029/2006GL027982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and Coauthors, 2014: Indian Ocean decadal variability: A review. Bull. Amer. Meteor. Soc., 95, 16791703, https://doi.org/10.1175/BAMS-D-13-00028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., G. A. Meehl, D. Stammer, A. Hu, B. Hamlington, J. Kenigson, H. Palanisamy, and P. Thompson, 2017: Spatial patterns of sea level variability associated with natural internal climate modes. Surv. Geophys., 38, 217250, https://doi.org/10.1007/s10712-016-9386-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., D. Stammer, G. Meehl, A. Hu, F. Sienz, and L. Zhang, 2018: Multi-decadal trend and decadal variability of the regional sea level over the Indian Ocean since the 1960s: Roles of climate modes and external forcing. Climate, 6, 51, https://doi.org/10.3390/cli6020051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., D. Stammer, P. Thompson, T. Ezer, H. Palanisamy, X. Zhang, C. M. Domingues, L. Zhang, and D. Yuan, 2019: Impacts of basin-scale climate modes on coastal sea level: A review. Surv. Geophys., https://doi.org/10.1007/s10712-019-09562-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hermes, J. C., and C. J. C. Reason, 2005: Ocean model diagnosis of interannual coevolving SST Variability in the South Indian and South Atlantic Oceans. J. Climate, 18, 28642882, https://doi.org/10.1175/JCLI3422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. L. Kinter III, 2002: Interannual variability in the tropical Indian Ocean. J. Geophys. Res., 107, 3199, https://doi.org/10.1029/2001JC001278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iizuka, S., T. Matsuura, and T. Yamagata, 2000: The Indian Ocean SST dipole simulated in a coupled general circulation model. Geophys. Res. Lett., 27, 33693372, https://doi.org/10.1029/2000GL011484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kopp, R. E., C. C. Hay, C. M. Little, and J. X. Mitrovica, 2015: Geographic variability of sea-level change. Curr. Climate Change Rep., 1, 192204, https://doi.org/10.1007/s40641-015-0015-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landschützer, P., N. Gruber, D. C. Bakker, and U. Schuster, 2014: Recent variability of the global ocean carbon sink. Global Biogeochem. Cycles, 28, 927949, https://doi.org/10.1002/2014GB004853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and W. Han, 2015: Decadal sea level variations in the Indian Ocean investigated with HYCOM: Roles of climate modes, ocean internal variability, and stochastic wind forcing. J. Climate, 28, 91439165, https://doi.org/10.1175/JCLI-D-15-0252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, and L. Zhang, 2017: Enhanced decadal warming of the southeast Indian Ocean during the recent global surface warming slowdown. Geophys. Res. Lett., 44, 98769884, https://doi.org/10.1002/2017GL075050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, A. Hu, G. A. Meehl, and F. Wang, 2018: Multidecadal changes of the upper Indian Ocean heat content during 1965–2016. J. Climate, 31, 78637884, https://doi.org/10.1175/JCLI-D-18-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llovel, W., and T. Lee, 2015: Importance and origin of halosteric contribution to sea level change in the southeast Indian Ocean during 2005–2013. Geophys. Res. Lett., 42, 11481157, https://doi.org/10.1002/2014GL062611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and G. Meyers, 1998: Forced Rossby waves in the southern tropical Indian Ocean. J. Geophys. Res., 103, 27 58927 602, https://doi.org/10.1029/98JC02546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metzl, N., A. Poisson, F. Louanchi, C. Brunet, B. Schauer, and B. Bres, 1995: Spatio-temporal distributions of air–sea fluxes of CO2 in the Indian and Antarctic Oceans. Tellus, 47B, 5669, https://doi.org/10.3402/tellusb.v47i1-2.16006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, G., 1996: Variation of Indonesian throughflow and the El Niño–Southern Oscillation. J. Geophys. Res., 101, 12 25512 263, https://doi.org/10.1029/95JC03729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morioka, Y., T. Tozuka, and T. Yamagata, 2010: Climate variability in the southern Indian Ocean as revealed by self-organizing maps. Climate Dyn., 35, 10591072, https://doi.org/10.1007/s00382-010-0843-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nidheesh, A. G., M. Lengaigne, J. Vialard, T. Izumo, A. S. Unnikrishnan, B. Meyssignac, B. Hamlington, and C. de Boyer Montégut, 2017: Robustness of observation-based decadal sea level variability in the Indo-Pacific Ocean. Geophys. Res. Lett., 44, 73917400, https://doi.org/10.1002/2017GL073955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G., 1990: El Niño, La Niña, and the Southern Oscillation. Elsevier, 293 pp.

  • Poisson, A., N. Metzl, C. Brunet, B. Schauer, B. Bres, D. Ruiz-Pino, and F. Louanchi, 1993: Variability of sources and sinks of CO2 in the western Indian and southern oceans during the year 1991. J. Geophys. Res., 98, 22 75922 778, https://doi.org/10.1029/93JC02501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, S. A., S. K. Behera, Y. Masumoto, and T. Yamagata, 2002: Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean dipole. Deep-Sea Res. II, 49, 15491572, https://doi.org/10.1016/S0967-0645(01)00158-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., R. Wanninkhof, R. M. Key, C. Goyet, and F. J. Millero, 2000: Seasonal CO2 fluxes in the tropical and subtropical Indian Ocean. Mar. Chem., 72, 3353, https://doi.org/10.1016/S0304-4203(00)00064-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Res., 25, 151169, https://doi.org/10.3354/cr025151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sayantani, O., and C. Gnanaseelan, 2015: Tropical Indian Ocean subsurface temperature variability and the forcing mechanisms. Climate Dyn., 44, 24472462, https://doi.org/10.1007/s00382-014-2379-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, T., M. A. Alexander, and H. H. Hendon, 2004: Remote response of the Indian Ocean to interannual SST variations in the tropical Pacific. J. Climate, 17, 362372, https://doi.org/10.1175/1520-0442(2004)017<0362:RROTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., A. Cazenave, R. M. Ponte, and M. E. Tamisiea, 2013: Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci., 5, 2146, https://doi.org/10.1146/annurev-marine-121211-172406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, R., S. K. Behera, S. Iizuka, and T. Yamagata, 2004: Indian Ocean subtropical dipole simulated using a coupled general circulation model. J. Geophys. Res., 109, C09001, https://doi.org/10.1029/2003JC001974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, P. R., C. G. Piecuch, M. A. Merrifield, J. P. McCreary, and E. Firing, 2016: Forcing of recent decadal variability in the equatorial and North Indian Ocean. J. Geophys. Res. Oceans, 121, 67626778, https://doi.org/10.1002/2016JC012132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tozuka, T., T. Yokoi, and T. Yamagata, 2010: A modeling study of interannual variations of the Seychelles Dome. J. Geophys. Res., 115, C04005, https://doi.org/10.1029/2009JC005547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenary, L. L., and W. Han, 2008: Causes of decadal subsurface cooling in the tropical Indian Ocean during 1961–2000. Geophys. Res. Lett., 35, L17602, https://doi.org/10.1029/2008GL034687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenary, L. L., and W. Han, 2012: Intraseasonal-to-interannual variability of South Indian Ocean sea level and thermocline: Remote versus local forcing. J. Phys. Oceanogr., 42, 602627, https://doi.org/10.1175/JPO-D-11-084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenary, L. L., and W. Han, 2013: Local and remote forcing of decadal sea level and thermocline depth variability in the South Indian Ocean. J. Geophys. Res. Oceans, 118, 381398, https://doi.org/10.1029/2012JC008317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, https://doi.org/10.1038/43848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijffels, S., and G. Meyers, 2004: An intersection of oceanic waveguides: Variability in the Indonesian Throughflow region. J. Phys. Oceanogr., 34, 12321253, https://doi.org/10.1175/1520-0485(2004)034<1232:AIOOWV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary Jr., 2002: Structure and mechanisms of South Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., S.-P. Xie, L. Wu, Y. Kosaka, N.-C. Lau, and G. A. Vecchi, 2015: Seasonality and predictability of the Indian Ocean dipole mode: ENSO forcing and internal variability. J. Climate, 28, 80218036, https://doi.org/10.1175/JCLI-D-15-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and W. Han, 2018: Impact of Ningaloo Niño on tropical Pacific and an inter-basin coupling mechanism. Geophys. Res. Lett., 45, 11 30011 309, https://doi.org/10.1029/2018GL078579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., W. Han, Y. Li, and T. Shinoda, 2018: Mechanisms for generation and development of Ningaloo Niño. J. Climate, 31, 92399259, https://doi.org/10.1175/JCLI-D-18-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhuang, W., M. Feng, Y. Du, A. Schiller, and D. Wang, 2013: Low-frequency sea level variability in the southern Indian Ocean and its impacts on the oceanic meridional transports. J. Geophys. Res. Oceans, 118, 13021315, https://doi.org/10.1002/jgrc.20129.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1244 465 139
PDF Downloads 1234 246 33