• Albers, J. R., and T. Birner, 2014: Vortex preconditioning due to planetary and gravity waves prior to sudden stratospheric warmings. J. Atmos. Sci., 71, 40284054, https://doi.org/10.1175/JAS-D-14-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Attard, H. E., and A. L. Lang, 2019: Troposphere–stratosphere coupling following tropospheric blocking and extratropical cyclones. Mon. Wea. Rev., 147, 17811804, https://doi.org/10.1175/MWR-D-18-0335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Attard, H. E., R. Rios-Berrios, C. T. Guastini, and A. L. Lang, 2016: Tropospheric and stratospheric precursors to the January 2013 sudden stratospheric warming. Mon. Wea. Rev., 144, 13211339, https://doi.org/10.1175/MWR-D-15-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayarzagüena, B., D. Barriopedro, J. M. Garrido-Perez, M. Abalos, A. de la Cámara, R. García-Herrera, N. Calvo, and C. Ordóñez, 2018: Stratospheric connection to the abrupt end of the 2016/2017 Iberian drought. Geophys. Res. Lett., 45, 12 63912 646, https://doi.org/10.1029/2018GL079802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., and N. Calvo, 2014: On the relationship between ENSO, stratospheric sudden warmings, and blocking. J. Climate, 27, 47044720, https://doi.org/10.1175/JCLI-D-13-00770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birner, T., and J. R. Albers, 2017: Sudden stratospheric warmings and anomalous upward wave activity flux. SOLA, 13A, 812, https://doi.org/10.2151/sola.13a-002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birner, T., D. W. J. Thompson, and T. G. Shepherd, 2013: Up-gradient eddy fluxes of potential vorticity near the subtropical jet. Geophys. Res. Lett., 40, 59885993, https://doi.org/10.1002/2013GL057728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., and L. M. Polvani, 2011: El Niño, La Niña, and stratospheric sudden warmings: A reevaluation in light of the observational record. Geophys. Res. Lett., 38, L13807, https://doi.org/10.1029/2011GL048084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. J. Seidel, S. C. Hardiman, N. Butchart, T. Birner, and A. Match, 2015: Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc., 96, 19131928, https://doi.org/10.1175/BAMS-D-13-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., and et al. , 2019: Sub-seasonal predictability and the stratosphere. Sub-Seasonal to Seasonal Prediction: The Gap Between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 223–241, doi:10.1016/B978-0-12-811714-9.00011-5.

    • Crossref
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, https://doi.org/10.1175/JCLI3996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159172, https://doi.org/10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., C. R. Mechoso, and J. D. Farrara, 2001: Interannual variations in the stratospheric circulation with a perfectly steady troposphere. J. Geophys. Res., 106, 51615172, https://doi.org/10.1029/2000JD900624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, P., and W. A. Robinson, 1992: Propagation of planetary waves between the troposphere and stratosphere. J. Atmos. Sci., 49, 25332545, https://doi.org/10.1175/1520-0469(1992)049<2533:POPWBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 1999: Stratospheric vacillations in a general circulation model. J. Atmos. Sci., 56, 18581872, https://doi.org/10.1175/1520-0469(1999)056<1858:SVIAGC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, J. H. E., 1974: Atmospheric response to the quasi-resonant growth of forced planetary waves. J. Meteor. Soc. Japan, 52, 143162, https://doi.org/10.2151/jmsj1965.52.2_143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colucci, S. J., and M. E. Kelleher, 2015: Diagnostic comparison of tropospheric blocking events with and without sudden stratospheric warming. J. Atmos. Sci., 72, 22272240, https://doi.org/10.1175/JAS-D-14-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., J. S. Whitaker, and P. D. Sardeshmukh, 2006: Feasibility of a 100-year reanalysis using only surface pressure data. Bull. Amer. Meteor. Soc., 87, 175190, https://doi.org/10.1175/BAMS-87-2-175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., J. R. Albers, T. Birner, R. R. Garcia, P. Hitchcock, D. E. Kinnison, and A. K. Smith, 2017: Sensitivity of sudden stratospheric warmings to previous stratospheric conditions. J. Atmos. Sci., 74, 28572877, https://doi.org/10.1175/JAS-D-17-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., M. Abalos, and P. Hitchcock, 2018a: Changes in stratospheric transport and mixing during sudden stratospheric warmings. J. Geophys. Res., 123, 33563373, https://doi.org/10.1002/2017JD028007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., M. Abalos, P. Hitchcock, N. Calvo, and R. R. Garcia, 2018b: Response of Arctic ozone to sudden stratospheric warmings. Atmos. Chem. Phys., 18, 16 49916 513, https://doi.org/10.5194/acp-18-16499-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., C. I. Garfinkel, and A. H. Butler, 2018a: The teleconnection of El Niño Southern Oscillation to the stratosphere. Rev. Geophys., 57, 547, https://doi.org/10.1029/2018RG000596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., O. Martius, and B. Jiménez-Esteve, 2018b: Rossby wave propagation into the Northern Hemisphere stratosphere: The role of zonal phase speed. Geophys. Res. Lett., 45, 20642071, https://doi.org/10.1002/2017GL076886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esler, J. G., and R. K. Scott, 2005: Excitation of transient Rossby waves on the stratospheric polar vortex and the barotropic sudden warming. J. Atmos. Sci., 62, 36613682, https://doi.org/10.1175/JAS3557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esler, J. G., and N. J. Matthewman, 2011: Stratospheric sudden warmings as self-tuning resonances. Part II: Vortex displacement events. J. Atmos. Sci., 68, 25052523, https://doi.org/10.1175/JAS-D-11-08.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., A. K. Smith, D. E. Kinnison, A. de la Cámara, and D. J. Murphy, 2017: Modification of the gravity wave parameterization in the Whole Atmosphere Community Climate Model: Motivation and results. J. Atmos. Sci., 74, 275291, https://doi.org/10.1175/JAS-D-16-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., A. H. Butler, D. W. Waugh, M. M. Hurwitz, and L. M. Polvani, 2012: Why might stratospheric sudden warmings occur with similar frequency in El Niño and La Niña winters? J. Geophys. Res., 117, D19106, https://doi.org/10.1029/2012JD017777.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., C. Schwartz, D. I. V. Domeisen, S.-W. Son, A. H. Butler, and I. P. White, 2018: Extratropical atmospheric predictability from the quasi-biennial oscillation in subseasonal forecast models. J. Geophys. Res. Atmos., 123, 78557866, https://doi.org/10.1029/2018JD028724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and P. Martineau, 2018: Quantifying the variability of the annular modes: Reanalysis uncertainty vs. sampling uncertainty. Atmos. Chem. Phys., 18, 17 09917 117, https://doi.org/10.5194/acp-18-17099-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., 2019: On the value of reanalyses prior to 1979 for dynamical studies of stratosphere–troposphere coupling. Atmos. Chem. Phys., 19, 27492764, https://doi.org/10.5194/acp-19-2749-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., and P. H. Haynes, 2016: Stratospheric control of planetary waves. Geophys. Res. Lett., 43, 11 88411 892, https://doi.org/10.1002/2016GL071372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and C. Mass, 1976: Stratospheric vacillation cycles. J. Atmos. Sci., 33, 22182225, https://doi.org/10.1175/1520-0469(1976)033<2218:SVC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B., 1983: Modelling of the transient eddies and their feedback on the mean flow. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. Pearce, Eds., Academic Press, 169–199.

  • Jucker, M., 2016: Are sudden stratospheric warmings generic? Insights from an idealized GCM. J. Atmos. Sci., 73, 50615080, https://doi.org/10.1175/JAS-D-15-0353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, https://doi.org/10.1038/ngeo2424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Labitzke, K., 1977: Interannual variability of the winter stratosphere in the Northern Hemisphere. Mon. Wea. Rev., 105, 762770, https://doi.org/10.1175/1520-0493(1977)105<0762:IVOTWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Labitzke, K., 1978: On the different behavior of the zonal harmonic height waves 1 and 2 during the winters 1970/71 and 1971/72. Mon. Wea. Rev., 106, 17041713, https://doi.org/10.1175/1520-0493(1978)106<1704:OTDBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Labitzke, K., 1981: Stratospheric–mesospheric midwinter disturbances: A summary of observed characteristics. J. Geophys. Res., 86, 96659678, https://doi.org/10.1029/JC086iC10p09665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, Z. D., and G. L. Manney, 2018: Characterizing stratospheric polar vortex variability with computer vision techniques. J. Geophys. Res. Atmos., 123, 15101535, https://doi.org/10.1002/2017JD027556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindgren, E. A., A. Sheshadri, and R. A. Plumb, 2018: Sudden stratospheric warming formation in an idealized general circulation model using three types of tropospheric forcing. J. Geophys. Res., 123, 10 12510 139, https://doi.org/10.1029/2018JD028537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., M. J. Mills, D. E. Kinnison, J.-F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 73727391, https://doi.org/10.1175/JCLI-D-12-00558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., and A. A. Scaife, 2010: Improved predictability of stratospheric sudden warming events in an atmospheric general circulation model with enhanced stratospheric resolution. J. Geophys. Res., 115, D16114, https://doi.org/10.1029/2009JD012643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martineau, P., and S.-W. Son, 2015: Onset of circulation anomalies during stratospheric vortex weakening events: The role of planetary-scale waves. J. Climate, 28, 73477370, https://doi.org/10.1175/JCLI-D-14-00478.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martineau, P., G. Chen, S.-W. Son, and J. Kim, 2018a: Lower-stratospheric control of the frequency of sudden stratospheric warming events. J. Geophys. Res., 123, 30513070, https://doi.org/10.1002/2017JD027648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martineau, P., J. S. Wright, N. Zhu, and M. Fujiwara, 2018b: Zonal-mean data set of global atmospheric reanalyses on pressure levels. Earth Syst. Sci. Data, 10, 19251941, https://doi.org/10.5194/essd-10-1925-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., L. M. Polvani, and H. C. Davies, 2009: Blocking precursors to stratospheric sudden warming events. Geophys. Res. Lett., 36, L14806, https://doi.org/10.1029/2009GL038776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 14791494, https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthewman, N. J., and J. G. Esler, 2011: Stratospheric sudden warmings as self-tuning resonances. Part I: Vortex splitting events. J. Atmos. Sci., 68, 24812504, https://doi.org/10.1175/JAS-D-11-07.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthewman, N. J., J. G. Esler, A. J. Charlton-Perez, and L. M. Polvani, 2009: A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure. J. Climate, 22, 15661585, https://doi.org/10.1175/2008JCLI2365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., 1982: How well do we understand the dynamics of stratospheric warmings? J. Meteor. Soc. Japan, 60, 3765, https://doi.org/10.2151/JMSJ1965.60.1_37.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melander, M. V., N. J. Zabusky, and A. S. Styczek, 1986: A moment model for vortex interactions of the two-dimensional Euler equations. Part 1. Computational validation of a Hamiltonian elliptical representation. J. Fluid Mech., 167, 95115, https://doi.org/10.1017/S0022112086002744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, P. A., and J. E. Rosenfield, 1997: Stratospheric thermal damping times. Geophys. Res. Lett., 24, 433436, https://doi.org/10.1029/96GL03720.

  • Plumb, R. A., 1981: Instability of the distorted polar night vortex: A theory of stratospheric warmings. J. Atmos. Sci., 38, 25142531, https://doi.org/10.1175/1520-0469(1981)038<2514:IOTDPN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and et al. , 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 35483554, https://doi.org/10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A., and et al. , 2014: Skillful long range prediction of European and North American winters. Geophys. Res. Lett., 41, 25142519, https://doi.org/10.1002/2014GL059637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A., and et al. , 2016: Seasonal winter forecasts and the stratosphere. Atmos. Sci. Lett., 17, 5156, https://doi.org/10.1002/asl.598.

  • Scott, R. K., and P. H. Haynes, 2000: Internal vacillations in stratosphere-only models. J. Atmos. Sci., 57, 32333250, https://doi.org/10.1175/1520-0469(2000)057<3233:IVISOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. K., and L. M. Polvani, 2004: Stratospheric control of upward wave flux near the tropopause. Geophys. Res. Lett., 31, L02115, https://doi.org/10.1029/2003GL017965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. K., and L. M. Polvani, 2006: Internal variability of the winter stratosphere. Part I: Time-independent forcing. J. Atmos. Sci., 63, 27582776, https://doi.org/10.1175/JAS3797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sjoberg, J. P., and T. Birner, 2012: Transient tropospheric forcing of sudden stratospheric warmings. J. Atmos. Sci., 69, 34203432, https://doi.org/10.1175/JAS-D-11-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sjoberg, J. P., and T. Birner, 2014: Stratospheric wave–mean flow feedbacks and sudden stratospheric warmings in a simple model forced by upward wave activity flux. J. Atmos. Sci., 71, 40554071, https://doi.org/10.1175/JAS-D-14-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. K., 1983: Observation of wave–wave interactions in the stratosphere. J. Atmos. Sci., 40, 24842496, https://doi.org/10.1175/1520-0469(1983)040<2484:OOWWII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. K., 1989: An investigation of resonant waves in a numerical model of an observed sudden stratospheric warming. J. Atmos. Sci., 46, 30383054, https://doi.org/10.1175/1520-0469(1989)046<3038:AIORWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. K., 1992: Preconditioning for stratospheric sudden warmings: Sensitivity studies with a numerical model. J. Atmos. Sci., 49, 10031019, https://doi.org/10.1175/1520-0469(1992)049<1003:PFSSWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. K., J. C. Gille, and L. V. Lyjak, 1984: Wave–wave interactions in the stratosphere: Observations during quiet and active wintertime periods. J. Atmos. Sci., 41, 363373, https://doi.org/10.1175/1520-0469(1984)041<0363:WIITSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. L., and P. J. Kushner, 2012: Linear interference and the initiation of extratropical stratosphere–troposphere interactions. J. Geophys. Res., 117, D13107, https://doi.org/10.1029/2012JD017587.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 14211428, https://doi.org/10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., and et al. , 2015: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Quart. J. Roy. Meteor. Soc., 141, 9871003, https://doi.org/10.1002/qj.2432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tung, K. K., and R. S. Lindzen, 1979: A theory of stationary long waves. Part II: Resonant Rossby waves in the presence of realistic vertical shears. Mon. Wea. Rev., 107, 735750, https://doi.org/10.1175/1520-0493(1979)107<0735:ATOSLW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. N. W., 1997: Elliptical diagnostics of stratospheric polar vortices. Quart. J. Roy. Meteor. Soc., 123, 17251748, https://doi.org/10.1002/qj.49712354213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, I., C. I. Garfinkel, E. P. Gerber, M. Jucker, V. Aquila, and L. D. Oman, 2019: The downward influence of sudden stratospheric warmings: Association with tropospheric precursors. J. Climate, 32, 85108, https://doi.org/10.1175/JCLI-D-18-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoden, S., 1987: Dynamical aspects of stratospheric vacillations in a highly truncated model. J. Atmos. Sci., 44, 36833695, https://doi.org/10.1175/1520-0469(1987)044<3683:DAOSVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 220 220 20
PDF Downloads 207 207 16

Are Sudden Stratospheric Warmings Preceded by Anomalous Tropospheric Wave Activity?

View More View Less
  • 1 Department of Earth Physics and Astrophysics, Universidad Complutense de Madrid, and Institute of Geosciences, Centro Mixto del Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Complutense de Madrid, Madrid, Spain
  • | 2 Meteorological Institute, Ludwig-Maximilians-Universität München, Munich, Germany
  • | 3 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

A combination of 240 years of output from a state-of-the-art chemistry–climate model and a twentieth-century reanalysis product is used to investigate to what extent sudden stratospheric warmings are preceded by anomalous tropospheric wave activity. To this end we study the fate of lower tropospheric wave events (LTWEs) and their interaction with the stratospheric mean flow. These LTWEs are contrasted with sudden stratospheric deceleration events (SSDs), which are similar to sudden stratospheric warmings but place more emphasis on the explosive dynamical nature of such events. Reanalysis and model output provide very similar statistics: Around one-third of the identified SSDs are preceded by wave events in the lower troposphere, while two-thirds of the SSDs are not preceded by a tropospheric wave event. In addition, only 20% of all anomalous tropospheric wave events are followed by an SSD in the stratosphere. This constitutes statistically robust evidence that the anomalous amplification of wave activity in the stratosphere that drives SSDs is not necessarily due to an anomalous amplification of the waves in the source region (i.e., the lower troposphere). The results suggest that the dynamics in the lowermost stratosphere and the vortex geometry are essential, and should be carefully analyzed in the search for precursors of SSDs.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0269.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alvaro de la Cámara, acamarai@ucm.es

Abstract

A combination of 240 years of output from a state-of-the-art chemistry–climate model and a twentieth-century reanalysis product is used to investigate to what extent sudden stratospheric warmings are preceded by anomalous tropospheric wave activity. To this end we study the fate of lower tropospheric wave events (LTWEs) and their interaction with the stratospheric mean flow. These LTWEs are contrasted with sudden stratospheric deceleration events (SSDs), which are similar to sudden stratospheric warmings but place more emphasis on the explosive dynamical nature of such events. Reanalysis and model output provide very similar statistics: Around one-third of the identified SSDs are preceded by wave events in the lower troposphere, while two-thirds of the SSDs are not preceded by a tropospheric wave event. In addition, only 20% of all anomalous tropospheric wave events are followed by an SSD in the stratosphere. This constitutes statistically robust evidence that the anomalous amplification of wave activity in the stratosphere that drives SSDs is not necessarily due to an anomalous amplification of the waves in the source region (i.e., the lower troposphere). The results suggest that the dynamics in the lowermost stratosphere and the vortex geometry are essential, and should be carefully analyzed in the search for precursors of SSDs.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0269.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alvaro de la Cámara, acamarai@ucm.es

Supplementary Materials

    • Supplemental Materials (PDF 192.57 KB)
Save