• Alexander, M. A., I. Blade, M. Newman, J. R. Lanzate, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., and R. Wu, 2017: Interdecadal changes in the relationship between interannual variations of spring North Atlantic SST and Eurasian surface air temperature. J. Climate, 30, 37713787, https://doi.org/10.1175/JCLI-D-16-0477.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., R. Wu, and W. Chen, 2018: Modulation of spring northern tropical Atlantic sea surface temperature on the El Niño–Southern Oscillation–East Asian summer monsoon connection. Int. J. Climatol., 38, 50205029, https://doi.org/10.1002/joc.5710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., R. Wu, L. Song, and W. Chen, 2019: Interannual variability of surface air temperature over mid-high latitudes of Eurasia during boreal autumn. Climate Dyn., 53, 18051821, https://doi.org/10.1007/S00382-019-04738-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., G. Liguori, N. Schneider, J. C. Furtado, B. T. Anderson, and M. A. Alexander, 2015: ENSO and meridional modes: A null hypothesis for Pacific climate variability. Geophys. Res. Lett., 42, 94409448, https://doi.org/10.1002/2015GL066281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., Z. Wang, Y. Song, and J. Zhang, 2008: The unprecedented freezing disaster in January 2008 in southern China and its possible association with the global warming. Acta Meteor. Sin., 22, 538558.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., and et al. , 2014: Interdecadal variability of the East Asian winter monsoon and its possible links to global climate change. J. Meteor. Res., 28, 693713, https://doi.org/10.1007/s13351-014-4046-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., A. Dai, M. Vuille, and O. E. Timm, 2018: Asymmetric modulation of ENSO teleconnections by the interdecadal Pacific oscillation. J. Climate, 31, 73377361, https://doi.org/10.1175/JCLI-D-17-0663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and X. J. Gao, 2018: Regional Earth system modeling: Review and future directions. Atmos. Oceanic Sci. Lett., 11, 189197, https://doi.org/10.1080/16742834.2018.1452520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D. Y., S. W. Wang, and J. H. Zhu, 2001: East Asian winter monsoon and Arctic Oscillation. Geophys. Res. Lett., 28, 20732076, https://doi.org/10.1029/2000GL012311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, L., C. W. Zhu, B. Q. Liu, and S. M. Ma, 2018: Subseasonal variation of winter rainfall anomalies over South China during the mature phase of super El Niño events. Atmos. Oceanic Sci. Lett., 11, 396403, https://doi.org/10.1080/16742834.2018.1505404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., T. Zhou, and B. Wu, 2017: The asymmetric effects of El Niño and La Niña on the East Asian winter monsoon and their simulation by CMIP5 atmospheric models. J. Meteor. Res., 31, 8293, https://doi.org/10.1007/s13351-017-6095-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., A. Lin, D. Gu, C. Li, and B. Zheng, 2017: Formation mechanism for the amplitude of interannual climate variability in subtropical Northern Hemisphere: Relative contributions from the zonal asymmetric mean state and the interannual variability of SST. Climate Dyn., 48, 697705, https://doi.org/10.1007/s00382-016-3105-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, S., and H. Wang, 2013a: Impact of the November/December Arctic Oscillation on the following January temperature in East Asia. J. Geophys. Res. Atmos., 118, 12 98112 998, https://doi.org/10.1002/2013JD020525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, S., and H. Wang, 2013b: Oscillating relationship between the East Asian winter monsoon and ENSO. J. Climate, 26, 98199838, https://doi.org/10.1175/JCLI-D-13-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., J. W. Hurrell, and T. Xu, 2001: Tropical origins for recent North Atlantic climate change. Science, 292, 9092, https://doi.org/10.1126/science.1058582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and et al. , 2015: Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4). Part I: Upgrades and Intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J. W., S. W. Yeh, and E. C. Chang, 2014: Combined effect of El Niño–Southern Oscillation and Pacific decadal oscillation on the East Asian winter monsoon. Climate Dyn., 42, 957971, https://doi.org/10.1007/s00382-013-1730-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and et al. , 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S. P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, D., W. Huang, Z. Yang, X. He, T. Qiu, B. Wang, and J. S. Wright, 2019: Impacts of wintertime extratropical cyclones on temperature and precipitation over northeastern China during 1979–2016. J. Geophys. Res. Atmos., 124, 15141536, https://doi.org/10.1029/2018JD029174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., L. Wang, W. Zhou, and W. Chen, 2014: Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies. Climate Dyn., 42, 28172839, https://doi.org/10.1007/s00382-014-2163-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., B. Dong, and H. Ding, 2006: Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon. Geophys. Res. Lett., 33, L24701, https://doi.org/10.1029/2006GL027655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • , Z., S. He, F. Li, and H. Wang, 2019: Impacts of the autumn Arctic sea ice on the intraseasonal reversal of the winter Siberian high. Adv. Atmos. Sci., 36, 173188, https://doi.org/10.1007/s00376-017-8089-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motion in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., D. Bi, and P. Hope, 1999: Atmospheric water vapor flux and its association with rainfall over China in summer. J. Climate, 12, 13531367, https://doi.org/10.1175/1520-0442(1999)012<1353:AWVFAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., 2018: Asymmetric variations in the tropical ascending branches of Hadley circulations and the associated mechanisms and effects. Adv. Atmos. Sci., 35, 317333, https://doi.org/10.1007/s00376-017-7089-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2013: Water vapor transport paths and accumulation during widespread events in northeastern China. J. Climate, 26, 45504566, https://doi.org/10.1175/JCLI-D-12-00300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2018: Interannual variation of the spring and summer precipitation over the Three River Source region in China and the associated regimes. J. Climate, 31, 74417457, https://doi.org/10.1175/JCLI-D-17-0680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2019: Enhanced connections between summer precipitation over the Three-River-Source region of China and the global climate system. Climate Dyn., 52, 34713488, https://doi.org/10.1007/s00382-018-4326-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., Y. L. Zhu, and H. J. Wang, 2011: The recent interdecadal and interannual variation of water vapor transport over eastern China. Adv. Atmos. Sci., 28, 10391048, https://doi.org/10.1007/s00376-010-0093-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., H. Wang, and B. Zhou, 2019: Climatic condition and synoptic regimes of two intense snowfall events in eastern China and implications for climate variability. J. Geophys. Res. Atmos., 124, 926941, https://doi.org/10.1029/2018JD029921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., and A. A. Scaife, 2006: The influence of ENSO on winter North Atlantic climate. Geophys. Res. Lett., 33, L24704, https://doi.org/10.1029/2006GL027881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and et al. , 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and S. He, 2012: Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s. Chin. Sci. Bull., 57, 35353540, https://doi.org/10.1007/s11434-012-5285-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, and R. Huang, 2007: Changes in the variability of North Pacific Oscillation around 1975/1976 and its relationship with East Asian winter climate. J. Geophys. Res., 112, D11110, https://doi.org/10.1029/2006JD008054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, and R. Huang, 2008: Interdecadal modulation of PDO on the impact of ENSO on the east Asian winter monsoon. Geophys. Res. Lett., 35, L20702, https://doi.org/10.1029/2008GL035287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., P. Zhai, and C. Wang, 2009: Variations in extratropical cyclone activity in northern East Asia. Adv. Atmos. Sci., 26, 471479, https://doi.org/10.1007/s00376-009-0471-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, H., S. K. Behera, and T. Yamagata, 2009: Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Climate Dyn., 32, 663674, https://doi.org/10.1007/s00382-008-0394-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., and J. Wang, 2002: Winter Arctic Oscillation, Siberian high and East Asian winter monsoon. Geophys. Res. Lett., 29, 1897, https://doi.org/10.1029/2002GL015373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Z. Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, https://doi.org/10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S. P., K. Yu, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Z., and B. Sun, 2019: Different roles of water vapor transport and cold advection in the intensive snowfall events over North China and the Yangtze River valley. Atmosphere, 10, https://doi.org/10.3390/ATMOS10070368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., F. Li, S. He, and H. Wang, 2018a: Subseasonal reversal of East Asian surface temperature variability in winter 2014/15. Adv. Atmos. Sci., 35, 737752, https://doi.org/10.1007/s00376-017-7059-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., S. He, F. Li, and H. Wang, 2018b: Impact of northern Eurasian snow cover in autumn on the warm Arctic–cold Eurasia pattern during the following January and its linkage to stationary planetary waves. Climate Dyn., 50, 19932006, https://doi.org/10.1007/s00382-017-3732-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., K. M. Lau, and K. M. Kim, 2002: Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies. J. Climate, 15, 306325, https://doi.org/10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., Z. Zhang, V. E. Kousky, R. W. Higgins, S. H. Yoo, J. Liang, and Y. Fan, 2008: Simulations and seasonal prediction of the Asian summer monsoon in the NCEP Climate Forecast System. J. Climate, 21, 37553775, https://doi.org/10.1175/2008JCLI1961.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, S., Q. Sun, Q. Huang, and P. Chu, 2016: The 10–30-day intraseasonal variation of the East Asian winter monsoon: The temperature mode. Dyn. Atmos. Oceans, 75, 91101, https://doi.org/10.1016/j.dynatmoce.2016.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., and S. T. Kim, 2011: Relationship between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24, 708720, https://doi.org/10.1175/2010JCLI3688.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and A. Sumi, 2002: Moisture circulation over East Asia during El Niño episode in northern winter, spring, and autumn. J. Meteor. Soc. Japan, 80, 213227, https://doi.org/10.2151/jmsj.80.213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y. Ding, and Q. Li, 2012: A climatology of extratropical cyclones over East Asia during 1958–2001. Acta Meteor. Sin., 26, 261277, https://doi.org/10.1007/s13351-012-0301-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, W., S. Chen, W. Chen, S. Yao, D. Nath, and B. Yu, 2019: Interannual variations of the rainy season withdrawal of the monsoon transitional zone in China. Climate Dyn., 53, 20312046, https://doi.org/10.1007/S00382-019-04762-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B. T., and Z. Y. Wang, 2015: On the significance of the interannual relationship between the Asian–Pacific Oscillation and the North Atlantic Oscillation. J. Geophys. Res., 120, 64896499, https://doi.org/10.1002/2015JD023328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L. T., C. Y. Tam, W. Zhou, and J. C. L. Chan, 2010: Influence of South China Sea SST and the ENSO on winter rainfall over South China. Adv. Atmos. Sci., 27, 832844, https://doi.org/10.1007/s00376-009-9102-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., and et al. , 2009: The CLIVAR C20C project: Which components of the Asian–Australian monsoon circulation variations are forced and reproducible? Climate Dyn., 33, 10511068, https://doi.org/10.1007/s00382-008-0501-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, W., X. Wang, T. J. Zhou, and J. C. L. Chan, 2007: Interdecadal variability of the relationship between the East Asian winter monsoon and ENSO. Meteor. Atmos. Phys., 98, 283293, https://doi.org/10.1007/s00703-007-0263-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, W., J. C. L. Chan, W. Chen, J. Ling, J. G. Pinto, and Y. Shao, 2009: Synoptic-scale controls of persistent low temperature and icy weather over southern China in January 2008. Mon. Wea. Rev., 137, 39783991, https://doi.org/10.1175/2009MWR2952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Z. Q., S. P. Xie, X. T. Zheng, Q. Liu, and H. Wang, 2014: Global warming-induced changes in El Niño teleconnection over the North Pacific and North America. J. Climate, 27, 90509064, https://doi.org/10.1175/JCLI-D-14-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., H. Wang, J. Ma, T. Wang, and J. Sun, 2015: Contribution of the phase transition of Pacific Decadal Oscillation to the late 1990’s shift in East China summer rainfall. J. Geophys. Res. Atmos., 120, 88178827, https://doi.org/10.1002/2015JD023545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, J., W. Li, C. Sun, and H. C. Ren, 2019: Remote forcing of the northern tropical Atlantic SST anomalies on the western North Pacific anomalous anticyclone. Climate Dyn., 52, 28372853, https://doi.org/10.1007/s00382-018-4298-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 86 86 11
PDF Downloads 51 51 8

Interdecadal Variation of the Relationship between East Asian Water Vapor Transport and Tropical Pacific Sea Surface Temperatures during January and Associated Mechanisms

View More View Less
  • 1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disasters, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, and Nansen Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

This study examined the interdecadal variations in the relationship between the East Asian water vapor transport (WVT) and the central and eastern tropical Pacific (CETP) sea surface temperatures (SSTs) in January during 1951–2018, focusing on the meridional WVT over East Asia, which is critical for the East Asian winter precipitation. The results indicate that before the 1980s, an increased southerly WVT over East Asia was generally associated with warm SST anomalies in the CETP during January, whereas, after the mid-1980s, an increased southerly WVT over East Asia was mostly associated with cold SST anomalies in the central tropical Pacific during January. The underlying mechanisms are discussed based on a comparison on the climate anomalies associated with the East Asian meridional WVT between the periods of 1951–79 and 1986–2018. During 1951–79, the meridional WVT over East Asia was mainly modulated by the Pacific–East Asian (PEA) teleconnection, which would induce an anomalous southerly WVT over East Asia corresponding to warm SST anomalies in the CETP. Whereas, during 1986–2018, the connection between the PEA teleconnection and the East Asian meridional WVT was weakened. The connection among the CETP SSTs, the anomalous zonal circulation over the North Pacific, and the East Asian meridional WVT was enhanced. Additionally, the connection among the CETP SSTs, the circumglobal teleconnection in the Northern Hemisphere, and the East Asian meridional WVT was enhanced. The above two enhanced connections opposed the effect of the PEA teleconnection and would induce an anomalous southerly WVT over East Asia corresponding to cold SST anomalies in the central tropical Pacific.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bo Sun, sunb@nuist.edu.cn

Abstract

This study examined the interdecadal variations in the relationship between the East Asian water vapor transport (WVT) and the central and eastern tropical Pacific (CETP) sea surface temperatures (SSTs) in January during 1951–2018, focusing on the meridional WVT over East Asia, which is critical for the East Asian winter precipitation. The results indicate that before the 1980s, an increased southerly WVT over East Asia was generally associated with warm SST anomalies in the CETP during January, whereas, after the mid-1980s, an increased southerly WVT over East Asia was mostly associated with cold SST anomalies in the central tropical Pacific during January. The underlying mechanisms are discussed based on a comparison on the climate anomalies associated with the East Asian meridional WVT between the periods of 1951–79 and 1986–2018. During 1951–79, the meridional WVT over East Asia was mainly modulated by the Pacific–East Asian (PEA) teleconnection, which would induce an anomalous southerly WVT over East Asia corresponding to warm SST anomalies in the CETP. Whereas, during 1986–2018, the connection between the PEA teleconnection and the East Asian meridional WVT was weakened. The connection among the CETP SSTs, the anomalous zonal circulation over the North Pacific, and the East Asian meridional WVT was enhanced. Additionally, the connection among the CETP SSTs, the circumglobal teleconnection in the Northern Hemisphere, and the East Asian meridional WVT was enhanced. The above two enhanced connections opposed the effect of the PEA teleconnection and would induce an anomalous southerly WVT over East Asia corresponding to cold SST anomalies in the central tropical Pacific.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bo Sun, sunb@nuist.edu.cn
Save