Characterizing the North American Monsoon in the Community Atmosphere Model: Sensitivity to Resolution and Topography

Arianna M. Varuolo-Clarke School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, and Lamont-Doherty Earth Observatory, and Department of Earth and Environmental Sciences, Columbia University, New York, New York

Search for other papers by Arianna M. Varuolo-Clarke in
Current site
Google Scholar
PubMed
Close
,
Kevin A. Reed School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Kevin A. Reed in
Current site
Google Scholar
PubMed
Close
, and
Brian Medeiros National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Brian Medeiros in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This work examines the effect of horizontal resolution and topography on the North American monsoon (NAM) in experiments with an atmospheric general circulation model. Observations are used to evaluate the fidelity of the representation of the monsoon in simulations from the Community Atmosphere Model version 5 (CAM5) with a standard 1.0° grid spacing and a high-resolution 0.25° grid spacing. The simulated monsoon has some realistic features, but both configurations also show precipitation biases. The default 1.0° grid spacing configuration simulates a monsoon with an annual cycle and intensity of precipitation within the observational range, but the monsoon begins and ends too gradually and does not reach far enough north. This study shows that the improved representation of topography in the high-resolution (0.25° grid spacing) configuration improves the regional circulation and therefore some aspects of the simulated monsoon compared to the 1.0° counterpart. At higher resolution, CAM5 simulates a stronger low pressure center over the American Southwest, with more realistic low-level wind flow than in the 1.0° configuration. As a result, the monsoon precipitation increases as does the amplitude of the annual cycle of precipitation. A moisture analysis sheds light on the monsoon dynamics, indicating that changes in the advection of enthalpy and moist static energy drive the differences between monsoon precipitation in CAM5 1.0° compared to the 0.25° configuration. Additional simulations confirm that these improvements are mainly due to the topographic influence on the low-level flow through the Gulf of California, and not only the increase in horizontal resolution.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Arianna M. Varuolo-Clarke, ariannav@ldeo.columbia.edu

Abstract

This work examines the effect of horizontal resolution and topography on the North American monsoon (NAM) in experiments with an atmospheric general circulation model. Observations are used to evaluate the fidelity of the representation of the monsoon in simulations from the Community Atmosphere Model version 5 (CAM5) with a standard 1.0° grid spacing and a high-resolution 0.25° grid spacing. The simulated monsoon has some realistic features, but both configurations also show precipitation biases. The default 1.0° grid spacing configuration simulates a monsoon with an annual cycle and intensity of precipitation within the observational range, but the monsoon begins and ends too gradually and does not reach far enough north. This study shows that the improved representation of topography in the high-resolution (0.25° grid spacing) configuration improves the regional circulation and therefore some aspects of the simulated monsoon compared to the 1.0° counterpart. At higher resolution, CAM5 simulates a stronger low pressure center over the American Southwest, with more realistic low-level wind flow than in the 1.0° configuration. As a result, the monsoon precipitation increases as does the amplitude of the annual cycle of precipitation. A moisture analysis sheds light on the monsoon dynamics, indicating that changes in the advection of enthalpy and moist static energy drive the differences between monsoon precipitation in CAM5 1.0° compared to the 0.25° configuration. Additional simulations confirm that these improvements are mainly due to the topographic influence on the low-level flow through the Gulf of California, and not only the increase in horizontal resolution.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Arianna M. Varuolo-Clarke, ariannav@ldeo.columbia.edu
Save
  • Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, J. L., and D. J. Stensrud, 2007: Impact of tropical easterly waves on the North American monsoon. J. Climate, 20, 12191238, https://doi.org/10.1175/JCLI4071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., and J. O. Roads, 2001: Summertime moisture divergence over the southwestern US and northwestern Mexico. Geophys. Res. Lett., 28, 19731976, https://doi.org/10.1029/2001GL012903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett., 33, L17810, https://doi.org/10.1029/2006GL026672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., M. F. Wehner, R. B. Neale, A. Gettelman, C. Hannay, P. H. Lauritzen, J. M. Caron, and J. E. Truesdale, 2014: Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM). J. Climate, 27, 30733099, https://doi.org/10.1175/JCLI-D-13-00387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banacos, P. C., and D. M. Schultz, 2005: The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Wea. Forecasting, 20, 351366, https://doi.org/10.1175/WAF858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryson, R. A., and W. P. Lowry, 1955: Synoptic climatology of the Arizona summer precipitation singularity. Bull. Amer. Meteor. Soc., 36, 329339, https://doi.org/10.1175/1520-0477-36.7.329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., 1986: Synoptic-dynamic character of ‘bursts’ and ‘breaks’ in the South-West U.S. summer precipitation singularity. Int. J. Climatol., 6, 605623, https://doi.org/10.1002/joc.3370060604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., 1987: Summer circulation climate of the American Southwest: 1945–1984. Ann. Assoc. Amer. Geogr., 77, 619634, https://doi.org/10.1111/j.1467-8306.1987.tb00184.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro, C. L., H.-I. Chang, F. Dominguez, C. Carrillo, J.-K. Schemm, and H.-M. Henry Juang, 2012: Can a regional climate model improve the ability to forecast the North American monsoon? J. Climate, 25, 82128237, https://doi.org/10.1175/JCLI-D-11-00441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerezo-Mota, R., T. Cavazos, R. Arritt, A. Torres-Alavez, K. Sieck, G. Nikulin, W. Moufouma-Okia, and J. A. Salinas-Prieto, 2016: CORDEX-NA: Factors inducing dry/wet years on the North American monsoon region. Int. J. Climatol., 36, 824836, https://doi.org/10.1002/joc.4385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and S. Bordoni, 2014: Orographic effects of the Tibetan Plateau on the East Asian summer monsoon: An energetic perspective. J. Climate, 27, 30523072, https://doi.org/10.1175/JCLI-D-13-00479.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2003: Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia, and Africa. J. Climate, 16, 406425, https://doi.org/10.1175/1520-0442(2003)016<0406:MLTNEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colorado-Ruiz, G., T. Cavazos, J. A. Salinas, P. De Grau, and R. Ayala, 2018: Climate change projections from Coupled Model Intercomparison Project phase 5 multi-model weighted ensembles for Mexico, the North American monsoon, and the mid-summer drought region. Int. J. Climatol., 38, 56995716, https://doi.org/10.1002/joc.5773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., and R. Seager, 2013: The response of the North American monsoon to increased greenhouse gas forcing. J. Geophys. Res. Atmos., 118, 16901699, https://doi.org/10.1002/jgrd.50111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominguez, F., G. Miguez-Macho, and H. Hu, 2016: WRF with water vapor tracers: A study of moisture sources for the North American monsoon. J. Hydrometeor., 17, 19151927, https://doi.org/10.1175/JHM-D-15-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., 1995: The summertime low-level jet over the Gulf of California. Mon. Wea. Rev., 123, 23342347, https://doi.org/10.1175/1520-0493(1995)123<2334:TSLLJO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finch, Z. O., and R. H. Johnson, 2010: Observational analysis of an upper-level inverted trough during the 2004 North American Monsoon Experiment. Mon. Wea. Rev., 138, 35403555, https://doi.org/10.1175/2010MWR3369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 2956, https://doi.org/10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geil, K. L., Y. L. Serra, and X. Zeng, 2013: Assessment of CMIP5 model simulations of the North American monsoon system. J. Climate, 26, 87878801, https://doi.org/10.1175/JCLI-D-13-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Global Modeling and Assimilation Office, 2015a: M2I3NPASM: MERRA-2 inst3 3d asm Np: 3d, 3-Hourly, Instantaneous, Pressure-level, Assimilation, Assimilated meteorological fields v5.12.4. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed October 2017, https://doi.org/10.5067/QBZ6MG944HW0.

    • Crossref
    • Export Citation
  • Global Modeling and Assimilation Office, 2015b: M2IMNXASM: MERRA-2 instm 2d asm Nx: 2d, Monthly mean, Single-level, Assimilation, Single-level diagnostics v5.12.4. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed October 2017, https://doi.org/10.5067/5ESKGQTZG7FO.

    • Crossref
    • Export Citation
  • Global Modeling and Assimilation Office, 2015c: M2T1NXFLX: MERRA-2 tavg1 2d flx Nx: 2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation, Surface Flux Diagnostics V5.12.4. Data retrieved from Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed October 2017, https://doi.org/10.5067/7MCPBJ41Y0K6.

    • Crossref
    • Export Citation
  • Global Modeling and Assimilation Office, 2015d: M2T1NXRAD: MERRA-2 tavg1 2d rad Nx: 2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation, Radiation Diagnostics v5.12.4. Data retrieved from Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed October 2017, https://doi.org/10.5067/Q9QMY5PBNV1T.

    • Crossref
    • Export Citation
  • Gutzler, D. S., and Coauthors, 2009: Simulations of the 2004 North American monsoon: NAMAP2. J. Climate, 22, 67166740, https://doi.org/10.1175/2009JCLI3138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Chen, and A. V. Douglas, 1999: Interannual variability of the North American warm season precipitation regime. J. Climate, 12, 653680, https://doi.org/10.1175/1520-0442(1999)012<0653:IVOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, W., and D. Gochis, 2007: Synthesis of results from the North American Monsoon Experiment (NAME) process study. J. Climate, 20, 16011607, https://doi.org/10.1175/JCLI4081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, https://doi.org/10.1029/2009GL040000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-J., B. Wang, and Q. Ding, 2008: The global monsoon variability simulated by CMIP3 coupled climate models. J. Climate, 21, 52715294, https://doi.org/10.1175/2008JCLI2041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauritzen, P. H., J. T. Bacmeister, P. F. Callaghan, and M. A. Taylor, 2015: NCAR_Topo (v1.0): NCAR global model topography generation software for unstructured grids. Geosci. Model Dev., 8, 39753986, https://doi.org/10.5194/gmd-8-3975-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez-Sanchez, J. N., and T. Cavazos, 2014: Eastern tropical Pacific hurricane variability and landfalls on Mexican coasts. Climate Res., 58, 221234, https://doi.org/10.3354/cr01192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp., www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

  • Neelin, J. D., 2007: Moist dynamics of tropical convection zones in monsoons, teleconnections and global warming. The Global Circulation of the Atmosphere, T. Schneider and A. Sobel, Eds., Princeton University Press, 267–301.

  • Newman, A. J., and R. H. Johnson, 2012: Simulation of a North American monsoon Gulf surge event and comparison to observations. Mon. Wea. Rev., 140, 25342554, https://doi.org/10.1175/MWR-D-11-00223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, A. J., and R. H. Johnson, 2013: Dynamics of a simulated North American monsoon Gulf surge event. Mon. Wea. Rev., 141, 32383253, https://doi.org/10.1175/MWR-D-12-00294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascale, S., S. Bordoni, S. B. Kapnick, G. A. Vecchi, L. Jia, T. L. Delworth, S. Underwood, and W. Anderson, 2016: The impact of horizontal resolution on North American monsoon Gulf of California moisture surges in a suite of coupled global climate models. J. Climate, 29, 79117936, https://doi.org/10.1175/JCLI-D-16-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascale, S., W. R. Boos, S. Bordoni, T. L. Delworth, S. B. Kapnick, H. Murakami, G. A. Vecchi, and W. Zhang, 2017: Weakening of the North American monsoon with global warming. Nat. Climate Change, 7, 806812, https://doi.org/10.1038/nclimate3412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascale, S., S. B. Kapnick, S. Bordoni, and T. L. Delworth, 2018: The influence of CO2 forcing on North American monsoon moisture surges. J. Climate, 31, 79497968, https://doi.org/10.1175/JCLI-D-18-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., 1967: Atmospheric water vapor transport and the water balance of North America: Part I. Characteristics of the water vapor flux field. Mon. Wea. Rev., 95, 403426, https://doi.org/10.1175/1520-0493(1967)095<0403:AWVTAT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, T. R., 1933: The North American high-level anticyclone. Mon. Wea. Rev., 61, 321325, https://doi.org/10.1175/1520-0493(1933)61<321:TNAHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reitan, C. H., 1957: The role of precipitable water vapor in Arizona’s summer rains. Tech. Rep. on the Meteorology and Climatology of Arid Regions, No. 2, The Institute of Atmospheric Physics, The University of Arizona, 19 pp.

  • Reiter, E. R., and M. Tang, 1984: Plateau effects on diurnal circulation patterns. Mon. Wea. Rev., 112, 638651, https://doi.org/10.1175/1520-0493(1984)112<0638:PEODCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., A. Solomon, and J. T. Bacmeister, 2014: On the simulation of the quasi-biennial oscillation in the Community Atmosphere Model, version 5. J. Geophys. Res., 119, 30453062, https://doi.org/10.1002/2013JD021122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., K. M. Wood, D. S. Gutzler, and S. R. White, 2011: The influence of eastern Pacific tropical cyclone remnants on the southwestern United States. Mon. Wea. Rev., 139, 192210, https://doi.org/10.1175/2010MWR3389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitz, J. T., and S. L. Mullen, 1996: Water vapor transport associated with the summertime North American monsoon as depicted by ECMWF analyses. J. Climate, 9, 16211634, https://doi.org/10.1175/1520-0442(1996)009<1621:WVTAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seastrand, S., Y. Serra, C. Castro, and E. Ritchie, 2015: The dominant synoptic-scale modes of North American monsoon precipitation. Int. J. Climatol., 35, 20192032, https://doi.org/10.1002/joc.4104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, M., and E. R. Reiter, 1984: Plateau monsoons of the Northern Hemisphere: A comparison between North America and Tibet. Mon. Wea. Rev., 112, 617637, https://doi.org/10.1175/1520-0493(1984)112<0617:PMOTNH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2000: The global monsoon as seen through the divergent atmospheric circulation. J. Climate, 13, 39693993, https://doi.org/10.1175/1520-0442(2000)013<3969:TGMAST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., and F. Dominguez, 2013: Effects of spatial resolution in the simulation of daily and subdaily precipitation in the southwestern US. J. Geophys. Res. Atmos., 118, 75917605, https://doi.org/10.1002/JGRD.50590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turrent, C., and T. Cavazos, 2009: Role of the land–sea thermal contrast in the interannual modulation of the North American Monsoon. Geophys. Res. Lett., 36, L02808, https://doi.org/10.1029/2008GL036299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., and Coauthors, 2014: The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J. Adv. Model. Earth Syst., 6, 980997, https://doi.org/10.1002/2013MS000276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., and M. H. P. Ambaum, 2017: Moist static energy: Definition, reference constants, a conservation law and effects on buoyancy. Quart. J. Roy. Meteor. Soc., 143, 27272734, https://doi.org/10.1002/qj.3121.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1643 674 159
PDF Downloads 919 153 13