Midlatitude Fronts and Variability in the Southern Hemisphere Tropical Width

Irina Rudeva School of Earth Sciences, The University of Melbourne, and Bureau of Meteorology, Melbourne, Victoria, Australia, and Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia

Search for other papers by Irina Rudeva in
Current site
Google Scholar
PubMed
Close
,
Ian Simmonds School of Earth Sciences, The University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Ian Simmonds in
Current site
Google Scholar
PubMed
Close
,
David Crock Bureau of Meteorology, Brisbane, Queensland, Australia

Search for other papers by David Crock in
Current site
Google Scholar
PubMed
Close
, and
Ghyslaine Boschat The ARC Centre of Excellence for Climate Extremes and the School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia

Search for other papers by Ghyslaine Boschat in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the relationship between midlatitude synoptic activity and variations in the width of the tropics in the Southern Hemisphere for the period 1979–2016. The edge of the tropical belt is defined here in terms of the latitude of the subtropical ridge (STR) of sea level pressure, and eddy activity in the midlatitudes is characterized by the behavior of atmospheric fronts. It is shown that the location and intensity of the STR are significantly correlated with the number of cold fronts between 20° and 40°S and that these relationships exhibit seasonal and zonal asymmetry. The link between the STR and the number of fronts is analyzed in five sectors of the Southern Hemisphere to reveal regional differences in their behavior and relationship with the southern annular mode. Some earlier studies on the widening of the tropics suggest that such changes may be caused by a shift in the location of midlatitude eddies. Our analysis explores the connection between these on a synoptic time scale. It shows that the variability of the width of the tropics is indeed strongly influenced by changes in the midlatitude synoptic activity, and that changes in synoptic activity lead those in the edge of the tropical belt by approximately one day.

ORCID: 0000-0001-9851-8198.

ORCID: 0000-0002-4479-3255.

ORCID: 0000-0002-5174-1170.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Irina Rudeva, irina.rudeva@bom.gov.au

Abstract

This study examines the relationship between midlatitude synoptic activity and variations in the width of the tropics in the Southern Hemisphere for the period 1979–2016. The edge of the tropical belt is defined here in terms of the latitude of the subtropical ridge (STR) of sea level pressure, and eddy activity in the midlatitudes is characterized by the behavior of atmospheric fronts. It is shown that the location and intensity of the STR are significantly correlated with the number of cold fronts between 20° and 40°S and that these relationships exhibit seasonal and zonal asymmetry. The link between the STR and the number of fronts is analyzed in five sectors of the Southern Hemisphere to reveal regional differences in their behavior and relationship with the southern annular mode. Some earlier studies on the widening of the tropics suggest that such changes may be caused by a shift in the location of midlatitude eddies. Our analysis explores the connection between these on a synoptic time scale. It shows that the variability of the width of the tropics is indeed strongly influenced by changes in the midlatitude synoptic activity, and that changes in synoptic activity lead those in the edge of the tropical belt by approximately one day.

ORCID: 0000-0001-9851-8198.

ORCID: 0000-0002-4479-3255.

ORCID: 0000-0002-5174-1170.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Irina Rudeva, irina.rudeva@bom.gov.au
Save
  • Allen, R. J., and M. Kovilakam, 2017: The role of natural climate variability in recent tropical expansion. J. Climate, 30, 63296350, https://doi.org/10.1175/JCLI-D-16-0735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., N. Siler, S.-P. Xie, and A. J. Miller, 2018: The interplay of internal and forced modes of Hadley cell expansion: Lessons from the global warming hiatus. Climate Dyn., 51, 305319, https://doi.org/10.1007/s00382-017-3921-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, H. S., C. Mbengue, and T. Woollings, 2018: Seasonal sensitivity of the Hadley cell and cross-hemispheric responses to diabatic heating in an idealized GCM. Geophys. Res. Lett., 45, 25332541, https://doi.org/10.1002/2018GL077013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G., C. Jakob, and M. Reeder, 2011: Recent global trends in atmospheric fronts. Geophys. Res. Lett., 38, L21812, https://doi.org/10.1029/2011GL049481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birner, T., S. M. Davis, and D. J. Seidel, 2014: The changing width of Earth’s tropical belt. Phys. Today, 67, 3844, https://doi.org/10.1063/PT.3.2620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blázquez, J., and S. A. Solman, 2018: Fronts and precipitation in CMIP5 models for the austral winter of the Southern Hemisphere. Climate Dyn., 50, 27052717, https://doi.org/10.1007/s00382-017-3765-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and T. Schneider, 2016: Energetic constraints on the width of the intertropical convergence zone. J. Climate, 29, 47094721, https://doi.org/10.1175/JCLI-D-15-0767.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2013: Southeast Australia autumn rainfall reduction: A climate-change-induced poleward shift of ocean–atmosphere circulation. J. Climate, 26, 189205, https://doi.org/10.1175/JCLI-D-12-00035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., T. Cowan, and M. Thatcher, 2012: Rainfall reductions over Southern Hemisphere semi-arid regions: The role of subtropical dry zone expansion. Sci. Rep., 2, 702, https://doi.org/10.1038/srep00702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., N. Nicholls, C. Jakob, and K. L. Shelton, 2014: Atmospheric fronts in current and future climates. Geophys. Res. Lett., 41, 76427650, https://doi.org/10.1002/2014GL061943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2017: Projected significant increase in the number of extreme extratropical cyclones in the Southern Hemisphere. J. Climate, 30, 49154935, https://doi.org/10.1175/JCLI-D-16-0553.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J., S.-W. Son, J. Lu, and S.-K. Min, 2014: Further observational evidence of Hadley cell widening in the Southern Hemisphere. Geophys. Res. Lett., 41, 25902597, https://doi.org/10.1002/2014GL059426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Crespo, J. A., D. J. Posselt, C. M. Naud, and C. Bussy-Virat, 2017: Assessing CYGNSS’s potential to observe extratropical fronts and cyclones. J. Appl. Meteor. Climatol., 56, 20272034, https://doi.org/10.1175/JAMC-D-17-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Agostino, R., and P. Lionello, 2017: Evidence of global warming impact on the evolution of the Hadley Circulation in ECMWF centennial reanalyses. Climate Dyn., 48, 30473060, https://doi.org/10.1007/s00382-016-3250-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, N., and T. Birner, 2017: On the discrepancies in tropical belt expansion between reanalyses and climate models and among tropical belt width metrics. J. Climate, 30, 12111231, https://doi.org/10.1175/JCLI-D-16-0371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, S. M., and K. H. Rosenlof, 2012: A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J. Climate, 25, 10611078, https://doi.org/10.1175/JCLI-D-11-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, S. M., B. Hassler, and K. H. Rosenlof, 2018: Revisiting ozone measurements as an indicator of tropical width. Prog. Earth Planet. Sci., 5, 56, https://doi.org/10.1186/s40645-018-0214-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and J. M. Wallace, 2012: Influence of the tropics on the southern annular mode. J. Climate, 25, 63306348, https://doi.org/10.1175/JCLI-D-11-00523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drosdowsky, W., 2005: The latitude of the subtropical ridge over Eastern Australia: The L index revisited. Int. J. Climatol., 25, 12911299, https://doi.org/10.1002/joc.1196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frederiksen, C. S., and S. Grainger, 2015: The role of external forcing in prolonged trends in Australian rainfall. Climate Dyn., 45, 24552468, https://doi.org/10.1007/s00382-015-2482-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., 2003: Extratropical Southern Hemisphere cyclones: Harbingers of climate change? J. Climate, 16, 28022805, https://doi.org/10.1175/1520-0442(2003)016<2802:ESHCHO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1999: Definition of Antarctic oscillation index. Geophys. Res. Lett., 26, 459462, https://doi.org/10.1029/1999GL900003.

  • Grieger, J., G. C. Leckebusch, C. C. Raible, I. Rudeva, and I. Simmonds, 2018: Subantarctic cyclones identified by 14 tracking methods, and their role for moisture transports into the continent. Tellus, 70A, 1454808, https://doi.org/10.1080/16000870.2018.1454808.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2016: Is climate sensitivity related to dynamical sensitivity? J. Geophys. Res., 121, 51595176, https://doi.org/10.1002/2015JD024687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., S. M. Davis, P. W. Staten, and O. Adam, 2018: Regional and seasonal characteristics of the recent expansion of the tropics. J. Climate, 31, 68396856, https://doi.org/10.1175/JCLI-D-18-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and Coauthors, 2019: Recent tropical expansion: Natural variability or forced response? J. Climate, 32, 15511571, https://doi.org/10.1175/JCLI-D-18-0444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., E.-P. Lim, and H. Nguyen, 2014: Seasonal variations of subtropical precipitation associated with the southern annular mode. J. Climate, 27, 34463460, https://doi.org/10.1175/JCLI-D-13-00550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., R. W. Lee, and L. Bengtsson, 2011: A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Climate, 24, 48884906, https://doi.org/10.1175/2011JCLI4097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hope, P., W. Drosdowsky, and N. Nicholls, 2006: Shifts in synoptic systems influencing southwest Western Australia. Climate Dyn., 26, 751764, https://doi.org/10.1007/s00382-006-0115-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hope, P., and Coauthors, 2014: A comparison of automated methods of front recognition for climate studies: A case study in southwest Western Australia. Mon. Wea. Rev., 142, 343363, https://doi.org/10.1175/MWR-D-12-00252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, D. A., and I. Simmonds, 1994: A climatology of Southern Hemisphere anticyclones. Climate Dyn., 10, 333348, https://doi.org/10.1007/BF00228031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., and L. M. Polvani, 2011: The interannual relationship between the latitude of the eddy-driven jet and the edge of the Hadley cell. J. Climate, 24, 563568, https://doi.org/10.1175/2010JCLI4077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kent, D. M., D. G. C. Kirono, B. Timbal, and F. H. S. Chiew, 2013: Representation of the Australian sub-tropical ridge in the CMIP3 models. Int. J. Climatol., 33, 4857, https://doi.org/10.1002/joc.3406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., J. A. Renwick, and J. McGregor, 2009: Hemispheric-scale seasonality of the southern annular mode and impacts on the climate of New Zealand. J. Climate, 22, 47594770, https://doi.org/10.1175/2009JCLI2640.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., S.-K. Min, S.-W. Son, and J. Choi, 2017: Attribution of the local Hadley cell widening in the Southern Hemisphere. Geophys. Res. Lett., 44, 10151024, https://doi.org/10.1002/2016GL072353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B., and Coauthors, 2013: Near-term climate change: Projections and predictability. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 953–1028.

  • Levine, X. J., and T. Schneider, 2015: Baroclinic eddies and the extent of the Hadley circulation: An idealized GCM study. J. Atmos. Sci., 72, 27442761, https://doi.org/10.1175/JAS-D-14-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., J. P. Li, and J. Feng, 2012: A teleconnection between the reduction of rainfall in southwest Western Australia and North China. J. Climate, 25, 84448461, https://doi.org/10.1175/JCLI-D-11-00613.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, C., and H. Nguyen, 2015: Regional characteristics of tropical expansion and the role of climate variability. J. Geophys. Res., 120, 68096824, https://doi.org/10.1002/2015JD023130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKellar, N., M. New and C. Jack, 2014: Observed and modelled trends in rainfall and temperature for South Africa: 1960–2010. S. African J. Sci., 110, 5163, https://doi.org/10.1590/SAJS.2014/20130353.

    • Search Google Scholar
    • Export Citation
  • Maher, P., and S. C. Sherwood, 2016: Skill in simulating Australian precipitation at the tropical edge. J. Climate, 29, 14771496, https://doi.org/10.1175/JCLI-D-15-0548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantsis, D. F., S. Sherwood, R. Allen, and L. Shi, 2017: Natural variations of tropical width and recent trends. Geophys. Res. Lett., 44, 38253832, https://doi.org/10.1002/2016GL072097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mbengue, C., and T. Schneider, 2017: Storm-track shifts under climate change: Toward a mechanistic understanding using baroclinic mean available potential energy. J. Atmos. Sci., 74, 93110, https://doi.org/10.1175/JAS-D-15-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mbengue, C., and T. Schneider, 2018: Linking Hadley circulation and storm tracks in a conceptual model of the atmospheric energy balance. J. Atmos. Sci., 75, 841856, https://doi.org/10.1175/JAS-D-17-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghini, B., I. Simmonds, and I. N. Smith, 2007: Association between Australian rainfall and the southern annular mode. Int. J. Climatol., 27, 109121, https://doi.org/10.1002/joc.1370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, H., A. Evans, C. Lucas, I. Smith, and B. Timbal, 2013: The Hadley circulation in reanalyses: Climatology, variability and change. J. Climate, 26, 33573376, https://doi.org/10.1175/JCLI-D-12-00224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, H., H. H. Hendon, E.-P. Lim, G. Boschat, E. Maloney, and B. Timbal, 2018: Variability of the extent of the Hadley circulation in the Southern Hemisphere: A regional perspective. Climate Dyn., 50, 129142, https://doi.org/10.1007/s00382-017-3592-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oort, A. H., and J. J. Yienger, 1996: Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate, 9, 27512767, https://doi.org/10.1175/1520-0442(1996)009<2751:OIVITH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parfitt, R., A. Czaja, and H. Seo, 2017: A simple diagnostic for the detection of atmospheric fronts. Geophys. Res. Lett., 44, 43514358, https://doi.org/10.1002/2017GL073662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepler, A., A. Dowdy, and P. Hope, 2019: A global climatology of surface anticyclones, their variability, associated drivers and long-term trends. Climate Dyn., 52, 53975412, https://doi.org/10.1007/S00382-018-4451-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., I. Simmonds, and J. A. Renwick, 2007: Southern Hemisphere cyclones and anticyclones: Recent trends and links with decadal variability in the Pacific Ocean. Int. J. Climatol., 27, 14031419, https://doi.org/10.1002/joc.1477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., H. Rashid, and I. Simmonds, 2012: Climate links and recent extremes in Antarctic sea ice, high-latitude cyclones, southern annular mode and ENSO. Climate Dyn., 38, 5773, https://doi.org/10.1007/s00382-011-1044-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purich, A., T. Cowan, S. Min, and W. Cai, 2013: Autumn precipitation trends over Southern Hemisphere midlatitudes as simulated by CMIP5 models. J. Climate, 26, 83418356, https://doi.org/10.1175/JCLI-D-13-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, X.-W., M. P. Hoerling, J. Perlwitz, H. F. Diaz, and T. Y. Xu, 2014: How fast are the tropics expanding? J. Climate, 27, 19992013, https://doi.org/10.1175/JCLI-D-13-00287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 2015: An Introduction to the Global Circulation of the Atmosphere. Princeton University Press, 456 pp.

  • Raut, B. A., M. J. Reeder, and C. Jakob, 2017: Trends in CMIP5 rainfall patterns over southwestern Australia. J. Climate, 30, 17791788, https://doi.org/10.1175/JCLI-D-16-0584.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., M. J. Pook, P. C. McIntosh, M. C. Wheeler, and H. H. Hendon, 2009: On the remote drivers of rainfall variability in Australia. Mon. Wea. Rev., 137, 32333253, https://doi.org/10.1175/2009MWR2861.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudeva, I., and I. Simmonds, 2015: Variability and trends of global atmospheric frontal activity and links with large-scale modes of variability. J. Climate, 28, 33113330, https://doi.org/10.1175/JCLI-D-14-00458.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schemm, S., I. Rudeva, and I. Simmonds, 2015: Extratropical fronts in the lower troposphere: Global perspectives obtained from two automated methods. Quart. J. Roy. Meteor. Soc., 141, 16861698, https://doi.org/10.1002/qj.2471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, D. F., and K. M. Grise, 2017: The response of local precipitation and sea level pressure to Hadley cell expansion. Geophys. Res. Lett., 44, 10 57310 582, https://doi.org/10.1002/2017GL075380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and A. Voigt, 2016: What can moist thermodynamics tell us about circulation shifts in response to uniform warming? Geophys. Res. Lett., 43, 45664575, https://doi.org/10.1002/2016GL068712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and K. Keay, 2000: Variability of Southern Hemisphere extratropical cyclone behavior 1958–97. J. Climate, 13, 550561, https://doi.org/10.1175/1520-0442(2000)013<0550:VOSHEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., K. Keay, and J. A. T. Bye, 2012: Identification and climatology of Southern Hemisphere mobile fronts in a modern reanalysis. J. Climate, 25, 19451962, https://doi.org/10.1175/JCLI-D-11-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and Z. Kuang, 2016: Exploring the role of eddy momentum fluxes in determining the characteristics of the equinoctial Hadley circulation: Fixed-SST simulations. J. Atmos. Sci., 73, 24272444, https://doi.org/10.1175/JAS-D-15-0212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., Z. Kuang, and Y. Tian, 2017: Eddy influences on the strength of the Hadley circulation: Dynamic and thermodynamic perspectives. J. Atmos. Sci., 74, 467486, https://doi.org/10.1175/JAS-D-16-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solman, S. A., and I. Orlanski, 2014: Poleward shift and change of frontal activity in the Southern Hemisphere over the last 40 years. J. Atmos. Sci., 71, 539552, https://doi.org/10.1175/JAS-D-13-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solman, S. A., and I. Orlanski, 2016: Climate change over the extratropical Southern Hemisphere: The tale from an ensemble of reanalysis datasets. J. Climate, 29, 16731687, https://doi.org/10.1175/JCLI-D-15-0588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., L. M. Polvani, D. W. Waugh, and S. M. Davis, 2016: Contrasting upper and lower atmospheric metrics of tropical expansion in the Southern Hemisphere. Geophys. Res. Lett., 43, 10 49610 503, https://doi.org/10.1002/2016GL070917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S.-W., S.-Y. Kim, and S.-K. Min, 2018: Widening of the Hadley cell from Last Glacial Maximum to future climate. J. Climate, 31, 267281, https://doi.org/10.1175/JCLI-D-17-0328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spensberger, C., and M. Sprenger, 2018: Beyond cold and warm: An objective classification for maritime midlatitude fronts. Quart. J. Roy. Meteor. Soc., 144, 261277, https://doi.org/10.1002/qj.3199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staten, P. W., J. Lu, K. M. Grise, S. M. Davis, and T. Birner, 2018: Re-examining tropical expansion. Nat. Climate Change, 8, 768775, https://doi.org/10.1038/s41558-018-0246-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamarin, T., and Y. Kaspi, 2017: The poleward shift of storm tracks under global warming: A Lagrangian perspective. Geophys. Res. Lett., 44, 10 66610 674, https://doi.org/10.1002/2017GL073633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamarin-Brodsky, T., and Y. Kaspi, 2017: Enhanced poleward propagation of storms under climate change. Nat. Geosci., 10, 908913, https://doi.org/10.1038/s41561-017-0001-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, L., Y. Hu, and J. Liu, 2016: Anthropogenic forcing on the Hadley circulation in CMIP5 simulations. Climate Dyn., 46, 33373350, https://doi.org/10.1007/s00382-015-2772-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tilinina, N., S. K. Gulev, I. Rudeva, and P. Koltermann, 2013: Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses. J. Climate, 26, 64196438, https://doi.org/10.1175/JCLI-D-12-00777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timbal, B., and W. Drosdowsky, 2013: The relationship between the decline of southeastern Australian rainfall and the strengthening of the subtropical ridge. Int. J. Climatol., 33, 10211034, https://doi.org/10.1002/joc.3492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2003: Seamless poleward atmospheric energy transports and implications for the Hadley circulation. J. Climate, 16, 37063722, https://doi.org/10.1175/1520-0442(2003)016<3706:SPAETA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2004: The flow of energy through the Earth’s climate system. Quart. J. Roy. Meteor. Soc., 130, 26772701, https://doi.org/10.1256/qj.04.83.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turton, S. M., 2017: Expansion of the tropics: Revisiting frontiers of geographical knowledge. Geogr. Res., 55, 312, https://doi.org/10.1111/1745-5871.12230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venables, W. N., and B. D. Ripley, 2003: Modern Applied Statistics with S (Statistics and Computing). Springer, 498 pp.

    • Crossref
    • Export Citation
  • Waugh, D. W., and Coauthors, 2018: Revisiting the relationship among metrics of tropical expansion. J. Climate, 31, 75657581, https://doi.org/10.1175/JCLI-D-18-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507, https://doi.org/10.1175/JAS3766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whan, K., B. Timbal, and J. Lindesay, 2014: Linear and nonlinear statistical analysis of the impact of sub-tropical ridge intensity and position on south-east Australian rainfall. Int. J. Climatol., 34, 326342, https://doi.org/10.1002/joc.3689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, A. A. J., and R. C. Stone, 2009: An assessment of relationships between the Australian subtropical ridge, rainfall variability, and high-latitude circulation patterns. Int. J. Climatol., 29, 691709, https://doi.org/10.1002/joc.1732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., and P. Álvarez-Zapatero, 2018: Coupled interannual variability of the Hadley and Ferrel cells. J. Climate, 31, 47574773, https://doi.org/10.1175/JCLI-D-17-0752.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1335 542 117
PDF Downloads 689 137 25