Abstract
Considerable uncertainties remain about the expected changes of ENSO and associated teleconnectivity as the climate is warming. Two ensembles of pacemaker experiments using the CNRM-CM5 coupled model are designed in a perfect model framework to contrast ENSO-forced teleconnectivity between the preindustrial period versus a warmer background state (obtained from a long stabilized simulation under late-twenty-first-century RCP8.5 constant forcing). The most notable sensitivity to the mean background state is found over the North Atlantic, where the ENSO–NAO teleconnection is considerably reinforced in a warmer world. We attribute this change to (i) a stronger and eastward-extended mean upper-level jet over the North Pacific, (ii) an eastward-shifted ENSO teleconnection over the North Pacific, and (iii) an equatorward-shifted and reinforced mean jet over the North Atlantic. These altogether act as a more efficient waveguide, leading to a better penetration of synoptic storms coming from the Pacific into the Atlantic. This downstream penetration into the North Atlantic basin forces more systematically the NAO through wave breaking. The reinforcement in the teleconnection is asymmetrical with respect to the ENSO phase and is mainly sensitive to La Niña events. Even though the Pacific jet tends to retract westward and move northward during cold events, mean changes are such that both Pacific and Atlantic jets remain connected in a warmer climate by contrast to the preindustrial period, thus ensuring preferred anticyclonic wave breaking downstream over the North Atlantic leading ultimately to NAO+ events.
Current affiliation: Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom.
© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).