A Region-Dependent Seasonal Forecasting Framework for Tropical Cyclone Genesis Frequency in the Western North Pacific

Chao Wang Key Laboratory of Meteorological Disaster of Ministry of Education, Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China, and Department of Atmospheric Sciences and International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Chao Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1589-1240
,
Bin Wang Department of Atmospheric Sciences and International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Bin Wang in
Current site
Google Scholar
PubMed
Close
, and
Liguang Wu Key Laboratory of Meteorological Disaster of Ministry of Education, Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Liguang Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT

It has been a common practice to predict total tropical cyclone (TC) genesis frequency over the entire western North Pacific (WNP). Here we show that TC genesis (TCG) exhibits distinct regional variability and sources of predictability. Therefore, we divide the WNP into four quadrants with 140°E and 17°N being dividing lines plus the South China Sea (SCS) to predict five subregional TCG frequencies as well as the entire WNP TCG frequency. Besides the well-known ENSO-induced seesaw relationship between the TCGs in the southeast and northwest quadrants, we found that 1) an enhanced TCG in the northeast WNP is associated with a pronounced anomalous cyclonic circulation, which is maintained through its interaction with the underlying sea surface temperature (SST) anomalies; 2) an active TCG in the southwest WNP is accompanied by a zonally elongated positive vorticity anomaly and SST warming over the equatorial eastern Pacific; and 3) the SCS TCG is influenced by the upper-level South Asia high through modulating large-scale environmental parameters. Physically meaningful predictors are identified and a set of empirical prediction models for TCG frequency is established for each subregion. Both the cross-validated reforecast for 1965–2000 and independent forecast for 2001–16 show significant temporal correlation skills. Moreover, the sum of the predicted TCG frequency in five subregions yields a basinwide TCG frequency prediction with a temporal correlation skill of 0.76 for the independent forecast period of 2001–16. The results indicate its potential utility to improve the TC forecasting in the WNP.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chao Wang, wangchao.typhoon@gmail.com

ABSTRACT

It has been a common practice to predict total tropical cyclone (TC) genesis frequency over the entire western North Pacific (WNP). Here we show that TC genesis (TCG) exhibits distinct regional variability and sources of predictability. Therefore, we divide the WNP into four quadrants with 140°E and 17°N being dividing lines plus the South China Sea (SCS) to predict five subregional TCG frequencies as well as the entire WNP TCG frequency. Besides the well-known ENSO-induced seesaw relationship between the TCGs in the southeast and northwest quadrants, we found that 1) an enhanced TCG in the northeast WNP is associated with a pronounced anomalous cyclonic circulation, which is maintained through its interaction with the underlying sea surface temperature (SST) anomalies; 2) an active TCG in the southwest WNP is accompanied by a zonally elongated positive vorticity anomaly and SST warming over the equatorial eastern Pacific; and 3) the SCS TCG is influenced by the upper-level South Asia high through modulating large-scale environmental parameters. Physically meaningful predictors are identified and a set of empirical prediction models for TCG frequency is established for each subregion. Both the cross-validated reforecast for 1965–2000 and independent forecast for 2001–16 show significant temporal correlation skills. Moreover, the sum of the predicted TCG frequency in five subregions yields a basinwide TCG frequency prediction with a temporal correlation skill of 0.76 for the independent forecast period of 2001–16. The results indicate its potential utility to improve the TC forecasting in the WNP.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chao Wang, wangchao.typhoon@gmail.com
Save
  • Camargo, S. J., A. G. Barnston, P. J. Klotzbach, and C. W. Landsea, 2007a: Seasonal tropical cyclone forecasts. WMO Bull., 56, 297309.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007b: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, https://doi.org/10.1175/JCLI4282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. H. Sobel, A. G. Barnston, and P. J. Klotzbach, 2010: The influence of natural climate variability on tropical cyclones, and seasonal forecasts of tropical cyclone activity. Global Perspectives on Tropical Cyclones, J. C. L. Chan and J. D. Kepert, Eds., World Scientific, 325–360.

    • Crossref
    • Export Citation
  • Camp, J., M. Roberts, C. Maclachlan, E. Wallace, L. Hermanson, A. Brookshaw, A. Arribas, and A. A. Scaife, 2015: Seasonal forecasting of tropical storms using the Met Office GloSea5 seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 22062219, https://doi.org/10.1002/qj.2516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteor. Atmos. Phys., 89, 143152, https://doi.org/10.1007/s00703-005-0126-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2006: Comment on “Changes in tropical cyclone number, duration, and intensity in a warming environment.” Science, 311, 1713, https://doi.org/10.1126/science.1121522.

    • Crossref
    • Export Citation
  • Chan, J. C. L., J. Shi, and C.-M. Lam, 1998: Seasonal forecasting of tropical cyclone activity over the western North Pacific and the South China Sea. Wea. Forecasting, 13, 9971004, https://doi.org/10.1175/1520-0434(1998)013<0997:SFOTCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., J.-E. Shi, and K. S. Liu, 2001: Improvements in the seasonal forecasting of tropical cyclone activity over the western North Pacific. Wea. Forecasting, 16, 491498, https://doi.org/10.1175/1520-0434(2001)016<0491:IITSFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., H. Wang, J. Liu, and G. Li, 2015: Why the spring North Pacific Oscillation is a predictor of typhoon activity over the western North Pacific. Int. J. Climatol., 35, 33533361, https://doi.org/10.1002/joc.4213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26, 380398, https://doi.org/10.1175/JCLI-D-12-00061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chia, H. H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 29342944, https://doi.org/10.1175/1520-0442(2002)015<2934:TIVITG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., L. Yang, and S.-P. Xie, 2011: Tropical Indian Ocean influence on northwest Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24, 315322, https://doi.org/10.1175/2010JCLI3890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2, https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm.

  • Fan, K., and H. Wang, 2009: A new approach to forecasting typhoon frequency over the western North Pacific. Wea. Forecasting, 24, 974986, https://doi.org/10.1175/2009WAF2222194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, C.-H., J. Kim, H. Kim, C. Sui, and D. Gong, 2005: Possible influence of the Antarctic Oscillation on tropical cyclone activity in the western North Pacific. J. Geophys. Res., 110, D19104, https://doi.org/10.1029/2005JD005766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huo, L., P. Guo, S. N. Hameed, and D. Jin, 2015: The role of tropical Atlantic SST anomalies in modulating western North Pacific tropical cyclone genesis. Geophys. Res. Lett., 42, 23782384, https://doi.org/10.1002/2015GL063184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., C.-H. Ho, P.-S. Chu, and J.-H. Kim, 2009: Seasonal prediction of summertime tropical cyclone activity over the East China Sea using the least absolute deviation regression and the Poisson regression. Int. J. Climatol., 30, 210219, https://doi.org/10.1002/JOC.1878.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., C.-H. Ho, and P.-S. Chu, 2010: Dipolar redistribution of summertime tropical cyclone genesis between the Philippine Sea and the northern South China Sea and its possible mechanisms. J. Geophys. Res., 115, D06104, https://doi.org/10.1029/2009JD012196.

    • Search Google Scholar
    • Export Citation
  • Kim, O.-Y., H.-M. Kim, M.-I. Lee, and Y.-M. Min, 2017: Dynamical–statistical seasonal prediction for western North Pacific typhoons based on APCC multi-models. Climate Dyn., 48, 7188, https://doi.org/10.1007/s00382-016-3063-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, D., J. Davidson, and L. Anderson-Berry, 2010: Disaster mitigation and societal impacts. Global Perspectives on Tropical Cyclones: From Science to Mitigation, J. C. L. Chan and J. D. Kepert, Eds., World Scientific, 409–436.

    • Crossref
    • Export Citation
  • Kossin, J. P., 2017: Hurricane intensification along United States coast suppressed during active hurricane periods. Nature, 541, 390393, https://doi.org/10.1038/nature20783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lander, M. A., 1994: An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122, 636651, https://doi.org/10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., S.-S. Lee, B. Wang, K.-J. Ha, and J.-G. Jhun, 2013: Seasonal prediction and predictability of the Asian winter temperature variability. Climate Dyn., 41, 573587, https://doi.org/10.1007/s00382-012-1588-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., and C. Zhu, 2016: A possible precursor of the South China Sea summer monsoon onset: Effect of the South Asian high. Geophys. Res. Lett., 43, 11 07211 079, https://doi.org/10.1002/2016GL071083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M.-M., P.-S. Chu, and Y.-C. Lin, 2010: Seasonal prediction of tropical cyclone activity near Taiwan using the Bayesian multivariate regression method. Wea. Forecasting, 25, 17801795, https://doi.org/10.1175/2010WAF2222408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., and Coauthors, 2016: Seasonal forecasts of tropical cyclone activity in a high-atmospheric-resolution coupled prediction system. J. Climate, 29, 11791200, https://doi.org/10.1175/JCLI-D-15-0531.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michaelsen, J., 1987: Cross-validation in statistical climate forecast models. J. Climate Appl. Meteor., 26, 15891600, https://doi.org/10.1175/1520-0450(1987)026<1589:CVISCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 26992721, https://doi.org/10.1175/2010JCLI3338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 24172424, https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 1979: A possible method for predicting seasonal tropical cyclone activity in the Australian region. Mon. Wea. Rev., 107, 12211224, https://doi.org/10.1175/1520-0493(1979)107<1221:APMFPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peduzzi, P., B. Chatenoux, H. Dao, A. De Bono, C. Herold, J. Kossin, F. Mouton, and O. Nordbeck, 2012: Global trends in tropical cyclone risk. Nat. Climate Change, 2, 289294, https://doi.org/10.1038/nclimate1410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., J. Gratz, C. W. Landsea, D. Collins, M. A. Saunders, and R. Musulin, 2008: Normalized hurricane damage in the United States: 1900–2005. Nat. Hazards Rev., 9, 2942, https://doi.org/10.1061/(ASCE)1527-6988(2008)9:1(29).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, L., L. Wu, Y. Wang, and J. Yang, 2012: Influence of tropical Indian Ocean warming and ENSO on tropical cyclone activity over the western North Pacific. J. Meteor. Soc. Japan, 90, 127144, https://doi.org/10.2151/jmsj.2012-107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016, https://doi.org/10.1175/JCLI-D-14-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian-Australian monsoon variation. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, https://doi.org/10.1029/2005GL022734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Y. Yang, Q.-H. Ding, H. Murakami, and F. Huang, 2010: Climate control of the global tropical storm days (1965–2008). Geophys. Res. Lett., 37, L07704, https://doi.org/10.1029/2010GL042487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., B. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 27182722, https://doi.org/10.1073/pnas.1214626110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J.-Y. Lee, and B. Xiang, 2015a: Asian summer monsoon rainfall predictability: A predictable mode analysis. Climate Dyn., 44, 6174, https://doi.org/10.1007/s00382-014-2218-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., B. Xiang, J. Li, P. J. Webster, M. N. Rajeevan, J. Liu, and K.-J. Ha, 2015b: Rethinking Indian monsoon rainfall prediction in the context of recent global warming. Nat. Commun., 6, 7154, https://doi.org/10.1038/ncomms8154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Li, and Q. He, 2017: Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957–2016). Adv. Atmos. Sci., 34, 12351248, https://doi.org/10.1007/s00376-017-7016-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and L. Wu, 2012: Tropical cyclone intensity change in the western North Pacific: Downscaling from IPCC AR4 experiments. J. Meteor. Soc. Japan, 90, 223233, https://doi.org/10.2151/jmsj.2012-205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and L. Wu, 2016: Interannual shift of the tropical upper-tropospheric trough and its influence on tropical cyclone formation over the western North Pacific. J. Climate, 29, 42034211, https://doi.org/10.1175/JCLI-D-15-0653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and L. Wu, 2018a: Future changes of the monsoon trough: Sensitivity to sea surface temperature gradient and implications for tropical cyclone activity. Earth’s Future, 6, 919936, https://doi.org/10.1029/2018EF000858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and L. Wu, 2018b: Projection of North Pacific tropical upper-tropospheric trough in CMIP5 models: Implications for changes in tropical cyclone formation locations. J. Climate, 31, 761774, https://doi.org/10.1175/JCLI-D-17-0292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and B. Wang, 2019: Tropical cyclone predictability shaped by western Pacific subtropical high: Integration of trans-basin sea surface temperature effects. Climate Dyn., 53, 26972714, https://doi.org/10.1007/s00382-019-04651-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., B. Wang, and L. Wu, 2019a: Abrupt breakdown of the predictability of early season typhoon frequency at the beginning of the twenty-first century. Climate Dyn., 52, 38093822, https://doi.org/10.1007/s00382-018-4350-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., L. Wu, H. Zhao, J. Cao, and W. Tian, 2019b: Is there a quiescent typhoon season over the western North Pacific following a strong El Niño event? Int. J. Climatol., 39, 6173, https://doi.org/10.1002/joc.5782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., J. Su, Y. Ding, and D. Chen, 2007: Tropical cyclone genesis over the South China Sea. J. Mar. Syst., 68, 318326, https://doi.org/10.1016/j.jmarsys.2006.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and K. Fan, 2007: Relationship between the Antarctic oscillation in the western North Pacific typhoon frequency. Chin. Sci. Bull., 52, 561565, https://doi.org/10.1007/s11434-007-0040-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., J. Sun, and K. Fan, 2007: Relationships between the North Pacific Oscillation and the typhoon/hurricane frequencies. Sci. China, 50D, 14091416, https://doi.org/10.1007/s11430-007-0097-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., W. Zhou, C. Li, and D. Wang, 2012: Effects of the East Asian summer monsoon on tropical cyclone genesis over the South China Sea on an interdecadal time scale. Adv. Atmos. Sci., 29, 249262, https://doi.org/10.1007/s00376-011-1080-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. Academic Press, 676 pp.

  • Wu, G., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeor., 8, 770789, https://doi.org/10.1175/JHM609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., C. Wang, and B. Wang, 2015: Westward shift of western North Pacific tropical cyclogenesis. Geophys. Res. Lett., 42, 15371542, https://doi.org/10.1002/2015GL063450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., B. Wang, W. Yu, and S. Xu, 2013: How can anomalous western North Pacific subtropical high intensify in late summer? Geophys. Res. Lett., 40, 23492354, https://doi.org/10.1002/grl.50431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, https://doi.org/10.3402/tellusa.v46i4.15484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xuan, S., Q. Zhang, and S. Sun, 2011: Anomalous midsummer rainfall in Yangtze River–Huaihe River valleys and its association with the East Asia westerly jet. Adv. Atmos. Sci., 28, 387397, https://doi.org/10.1007/s00376-010-0111-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Z.-B., Z.-H. Lin, and H. Zhang, 2015: The relationship between the East Asian subtropical westerly jet and summer precipitation over East Asia as simulated by the IAP AGCM4.0. Atmos. Oceanic Sci. Lett., 7, 487492, https://doi.org/ 10.3878/AOSL20140048.

    • Search Google Scholar
    • Export Citation
  • Yim, S.-Y., B. Wang, and W. Xing, 2014: Prediction of early summer rainfall over South China by a physical-empirical model. Climate Dyn., 43, 18831891, https://doi.org/10.1007/s00382-013-2014-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., and Y. Wang, 2016: CFSv2-based statistical prediction for seasonal accumulated cyclone energy (ACE) over the western North Pacific. J. Climate, 29, 525541, https://doi.org/10.1175/JCLI-D-15-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and X. Lei, 2011a: Contributions of ENSO and East Indian Ocean SSTA to the interannual variability of northwest Pacific tropical cyclone frequency. J. Climate, 24, 509521, https://doi.org/10.1175/2010JCLI3808.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and C. C. Wu, 2011b: Impact of SSTA in the East Indian Ocean on the frequency of northwest Pacific tropical cyclones: A regional atmospheric model study. J. Climate, 24, 62276242, https://doi.org/10.1175/JCLI-D-10-05014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and M. Ying, 2012: Seasonal forecasts of tropical cyclone activity over the western North Pacific: A review. Trop. Cyclone Res. Rev., 1, 307324, https://doi.org/10.6057/2012TCRR03.07.

    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and M. Wen, 2013: The SST gradient between the southwestern Pacific and the western Pacific warm pool: A new factor controlling the northwestern Pacific tropical cyclone genesis frequency. J. Climate, 26, 24082415, https://doi.org/10.1175/JCLI-D-12-00798.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., L. Wu, and Q. Liu, 2009: Tropical cyclone damages in China 1983–2006. Bull. Amer. Meteor. Soc., 90, 489496, https://doi.org/10.1175/2008BAMS2631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., G. A. Vecchi, H. Murakami, G. Villarini, and L. Jia, 2016a: The Pacific meridional mode and the occurrence of tropical cyclones in the western North Pacific. J. Climate, 29, 381398, https://doi.org/10.1175/JCLI-D-15-0282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., G. Villarini, G. A. Vecchi, H. Murakami, and R. Gudgel, 2016b: Statistical-dynamical seasonal forecast of western North Pacific and East Asia landfalling tropical cyclones using the high-resolution GFDL FLOR coupled model. J. Adv. Model. Earth Syst., 8, 538565, https://doi.org/10.1002/2015MS000607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., S. Zhong, Z. Wu, and Y. Li, 2018: Seasonal prediction of the typhoon genesis frequency over the western North Pacific with a Poisson regression model. Climate Dyn., 51, 45854600, https://doi.org/10.1007/s00382-017-3654-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., 2016: A downscaling technique to simulate changes in western North Pacific tropical cyclone activity between two types of El Niño events. Theor. Appl. Climatol., 123, 487501, https://doi.org/10.1007/s00704-015-1374-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and C. Wang, 2016: Interdecadal modulation on the relationship between ENSO and typhoon activity during the late season in the western North Pacific. Climate Dyn., 47, 315328, https://doi.org/10.1007/s00382-015-2837-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and C. Wang, 2019: On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer. Climate Dyn., 52, 275288, https://doi.org/10.1007/s00382-018-4136-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., L. Wu, and W. Zhou, 2010: Assessing the influence of the ENSO on tropical cyclone prevailing tracks in the western North Pacific. Adv. Atmos. Sci., 27, 13611371, https://doi.org/10.1007/s00376-010-9161-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., and X. Cui, 2008: Hadley circulation signal in the tropical cyclone frequency over the western North Pacific. J. Geophys. Res., 113, D16107, https://doi.org/10.1029/2007JD009156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., and X. Cui, 2011: Sea surface temperature east of Australia: A predictor of tropical cyclone frequency over the western North Pacific? Chin. Sci. Bull., 56, 196201, https://doi.org/10.1007/s11434-010-4157-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 754 196 21
PDF Downloads 544 142 9