Recent Strengthening of the Relationship between the Western North Pacific Monsoon and Western North Pacific Tropical Cyclone Activity during the Boreal Summer

Haikun Zhao Key Laboratory of Meteorological Disaster, Ministry of Education, and Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, and Pacific Typhoon Research Center, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Haikun Zhao in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1771-1461
,
Shaohua Chen Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Shaohua Chen in
Current site
Google Scholar
PubMed
Close
, and
Philip J. Klotzbach Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Philip J. Klotzbach in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the association between the western North Pacific (WNP) summer monsoon (WNPSM) and WNP tropical cyclone (TC) frequency during June–August from 1979 to 2016. The interannual relationship between the WNPSM and the total number of WNP TCs has strengthened since 1998. There has also been a significant reduction in the number of TCs forming within the WNP monsoon trough (WNPMT)—hereafter called ITCs, for internal or inside TCs—since 1998. These two important features are found to be closely associated with the climate regime shift that occurred around 1998. During 1998–2016, the Pacific decadal oscillation (PDO) tended to be in a cold phase, with an increasing occurrence of central Pacific–type El Niño–Southern Oscillation (ENSO) events, whereas the 1979–97 period tended to be characterized by a warm phase of the PDO and east Pacific–type ENSO events. During 1998–2016, the tropical Pacific was characterized by enhanced easterlies, which led to a westward-retreated WNPMT that caused a significant decrease in ITCs over the WNP basin. However, there was little change in TCs outside of the WNPMT region (hereafter called OTCs) compared to that before 1998. A significant in-phase (out-of-phase) relationship between the WNPSM and the number of ITCs (OTCs) is observed before 1998, thus greatly weakening the WNPSM–TC relationship. The recent enhanced relationship between the WNPSM and TCs is mainly due to a strong in-phase relationship between the WNPSM and ITCs. The interannual change in ITCs is mainly controlled by WNPSM changes since 1998, while OTC changes are mainly modulated by changes in the tropical upper-tropospheric trough.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Haikun Zhao, zhk2004y@gmail.com

Abstract

This study examines the association between the western North Pacific (WNP) summer monsoon (WNPSM) and WNP tropical cyclone (TC) frequency during June–August from 1979 to 2016. The interannual relationship between the WNPSM and the total number of WNP TCs has strengthened since 1998. There has also been a significant reduction in the number of TCs forming within the WNP monsoon trough (WNPMT)—hereafter called ITCs, for internal or inside TCs—since 1998. These two important features are found to be closely associated with the climate regime shift that occurred around 1998. During 1998–2016, the Pacific decadal oscillation (PDO) tended to be in a cold phase, with an increasing occurrence of central Pacific–type El Niño–Southern Oscillation (ENSO) events, whereas the 1979–97 period tended to be characterized by a warm phase of the PDO and east Pacific–type ENSO events. During 1998–2016, the tropical Pacific was characterized by enhanced easterlies, which led to a westward-retreated WNPMT that caused a significant decrease in ITCs over the WNP basin. However, there was little change in TCs outside of the WNPMT region (hereafter called OTCs) compared to that before 1998. A significant in-phase (out-of-phase) relationship between the WNPSM and the number of ITCs (OTCs) is observed before 1998, thus greatly weakening the WNPSM–TC relationship. The recent enhanced relationship between the WNPSM and TCs is mainly due to a strong in-phase relationship between the WNPSM and ITCs. The interannual change in ITCs is mainly controlled by WNPSM changes since 1998, while OTC changes are mainly modulated by changes in the tropical upper-tropospheric trough.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Haikun Zhao, zhk2004y@gmail.com
Save
  • Aiyyer, A. R., and J. Molinari, 2003: Evolution of mixed Rossby–gravity waves in idealized MJO environments. J. Atmos. Sci., 60, 28372855, https://doi.org/10.1175/1520-0469(2003)060<2837:EOMRWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, https://doi.org/10.1029/2001JD000776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briegel, L. M., and W. M. Frank, 1997: Large-scale influences on tropical cyclogenesis in the western North Pacific. Mon. Wea. Rev., 125, 13971413, https://doi.org/10.1175/1520-0493(1997)125<1397:LSIOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015: ENSO and greenhouse warming. Nat. Climate Change, 5, 849859, https://doi.org/10.1038/nclimate2743.

  • Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006, https://doi.org/10.1175/JCLI3457.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007a: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, https://doi.org/10.1175/JCLI4282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. H. Sobel, A. G. Barnston, and K. A. Emanuel, 2007b: Tropical cyclone genesis potential index in climate models. Tellus, 59A, 428443, https://doi.org/10.1111/j.1600-0870.2007.00238.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., M. C. Wheeler, and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66, 30613074, https://doi.org/10.1175/2009JAS3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, X., S. Chen, G. Chen, and R. Wu, 2016: Intensified impact of northern tropical Atlantic SST on tropical cyclogenesis frequency over the western North Pacific after the late 1980s. Adv. Atmos. Sci., 33, 919930, https://doi.org/10.1007/s00376-016-5206-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteor. Atmos. Phys., 89, 143152, https://doi.org/10.1007/S00703-005-0126-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and W. Zhou, 2005: PDO, ENSO and the early summer monsoon rainfall over south China. Geophys. Res. Lett., 32, L08810, https://doi.org/10.1029/2004GL022015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. C., and J. L. Evans, 2002: Comparison of the structure of the ITCZ in the west Pacific during the boreal summers of 1989–93 using AMIP simulations and ECMWF reanalysis. J. Climate, 15, 35493568, https://doi.org/10.1175/1520-0442(2002)015<3549:COTSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and R. Huang, 2009: Interannual variations in mixed Rossby–gravity waves and their impacts on tropical cyclogenesis over the western North Pacific. J. Climate, 22, 535549, https://doi.org/10.1175/2008JCLI2221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and C.-Y. Tam, 2010: Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys. Res. Lett., 37, L01803, https://doi.org/10.1029/2009GL041708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., S.-P. Weng, N. Yamazaki, and S. Kiehne, 1998: Interannual variation in the tropical cyclone formation over the western North Pacific. Mon. Wea. Rev., 126, 10801090, https://doi.org/10.1175/1520-0493(1998)126<1080:IVITTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., S. Wang, and M. Yen, 2006: Interannual variation of the tropical cyclone activity over the western North Pacific. J. Climate, 19, 57095720, https://doi.org/10.1175/JCLI3934.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J. W., B. J. Kim, R. Zhang, K. J. Park, J. Y. Kim, Y. Cha, and J. C. Nam, 2016: Possible relation of the western North Pacific monsoon to the tropical cyclone activity over western North Pacific. Int. J. Climatol., 36, 33343345, https://doi.org/10.1002/joc.4558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J.-Y. Tu, and J.-Y. Yu, 2003: Interannual variability of the western North Pacific summer monsoon: Differences between ENSO and non-ENSO years. J. Climate, 16, 22752287, https://doi.org/10.1175/2761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, J.-H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002: The Joint Typhoon Warning Center tropical cyclone best tracks 1945–2000. Joint Typhoon Warning Center Rep., https://www.metoc.navy.mil/jtwc/products/best-tracks/tc-bt-report.html.

  • Dickinson, M., and J. Molinari, 2002: Mixed Rossby–gravity waves and western Pacific tropical cyclogenesis. Part I: Synoptic evolution. J. Atmos. Sci., 59, 21832196, https://doi.org/10.1175/1520-0469(2002)059<2183:MRGWAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2018: 100 years of progress in tropical cyclone research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, 15.115.68, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241, https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm.

  • Frank, W. M., 1987: Tropical cyclone formation. A Global View of Tropical Cyclones, R. L. Elsberry, Ed., University of Chicago Press, 53–90.

  • Frank, W. M., and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417, https://doi.org/10.1175/MWR3204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 11691187, https://doi.org/10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1975: Tropical cyclone genesis. Department of Atmospheric Science Paper 234, Colorado State University, 121 pp.

  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. D. B. Shaw, Ed., Meteorology over the Tropical Oceans, Royal Meteorological Society, 155–218.

  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 3769, https://doi.org/10.1007/BF01277501.

  • Han, R., and Coauthors, 2016: An assessment of multimodel simulations for the variability of western North Pacific tropical cyclones and its association with ENSO. J. Climate, 29, 64016423, https://doi.org/10.1175/JCLI-D-15-0720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and J. C. L. Chan, 2005: Monsoon impacts on tropical cyclone variability. The Global Monsoon System: Research and Forecast, C. P. Chang, B. Wang, and N. C. Lau, Eds., WMO, 512–542.

  • He, H., J. Yang, L. Wu, D. Gong, B. Wang, and M. Gao, 2017: Unusual growth in intense typhoon occurrences over the Philippine Sea in September after the mid-2000s. Climate Dyn., 48, 18931910, https://doi.org/10.1007/s00382-016-3181-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1995: Scale interaction in the western Pacific monsoon. Meteor. Atmos. Phys., 56, 5779, https://doi.org/10.1007/BF01022521.

  • Hong, C.-C., Y.-H. Li, T. Li, and M.-Y. Lee, 2011: Impacts of central Pacific and eastern Pacific El Niños on tropical cyclone tracks over the western North Pacific. Geophys. Res. Lett., 38, L16712, https://doi.org/10.1029/2011GL048821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., Y.-K. Wu, and T. Li, 2016: Influence of climate regime shift on the interdecadal change in tropical cyclone activity over the Pacific Basin during the middle to late 1990s. Climate Dyn., 47, 25872600, https://doi.org/10.1007/s00382-016-2986-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., P.-S. Chu, H. Murakami, and X. Zhao, 2014: An abrupt decrease in the late-season typhoon activity over the western North Pacific. J. Climate, 27, 42964312, https://doi.org/10.1175/JCLI-D-13-00417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, C., C. Zhang, S. Yang, D. Chen, and S. He, 2018: Perspective on the northwestward shift of autumn tropical cyclogenesis locations over the western North Pacific from shifting ENSO. Climate Dyn., 51, 24552465, https://doi.org/10.1007/S00382-017-4022-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huangfu, J., R. Huang, W. Chen, T. Feng, and L. Wu, 2017: Interdecadal variation of tropical cyclone genesis and its relationship to the monsoon trough over the western North Pacific. Int. J. Climatol., 37, 35873596, https://doi.org/10.1002/joc.4939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2012: Simulation of the intraseasonal variability over the eastern Pacific ITCZ in climate models. Climate Dyn., 39, 617636, https://doi.org/10.1007/s00382-011-1098-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., B. Xiang, M. Zhao, T. Li, S.-J. Lin, Z. Wang, and J.-H. Chen, 2018: Intraseasonal tropical cyclone genesis prediction in a global coupled model system. J. Climate, 31, 62096227, https://doi.org/10.1175/JCLI-D-17-0454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H. Y., and J. Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H. M., P. J. Webster, and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 7780, https://doi.org/10.1126/science.1174062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, https://doi.org/10.1038/ngeo779.

  • Lander, M. A., 1994: An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122, 636651, https://doi.org/10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, B. Wu, T. Zhou, C. P. Chang, and R. Zhang, 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 9871006, https://doi.org/10.1007/s13351-017-7147-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 2013: Inactive period of western North Pacific tropical cyclone activity in 1998–2011. J. Climate, 26, 26142630, https://doi.org/10.1175/JCLI-D-12-00053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., and Coauthors, 2015: Extended reconstructed sea surface temperature version 4 (ERSST. v4): Part II. Parametric and structural uncertainty estimations. J. Climate, 28, 931951, https://doi.org/10.1175/JCLI-D-14-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyon, B., and S. J. Camargo, 2009: The seasonally-varying influence of ENSO on rainfall and tropical cyclone activity in the Philippines. Climate Dyn., 32, 125141, https://doi.org/10.1007/s00382-008-0380-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maue, R. N., 2011: Recent historically low global tropical cyclone activity. Geophys. Res. Lett., 38, L14803, https://doi.org/10.1029/2011GL047711.

  • McBride, J. L., 1995: Tropical cyclone formation. Global Perspectives on Tropical Cyclones, R. L. Elsberry, Ed., World Meteorological Organization, 63–105.

  • McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 11321151, https://doi.org/10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2013: What percentage of western North Pacific tropical cyclones form within the monsoon trough? Mon. Wea. Rev., 141, 499505, https://doi.org/10.1175/MWR-D-12-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 26992721, https://doi.org/10.1175/2010JCLI3338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, https://doi.org/10.1175/JAS3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and E. E. Recker, 1971: Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci., 28, 11171133, https://doi.org/10.1175/1520-0469(1971)028<1117:SAPOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., 1995: Mesoscale aspects of tropical cyclone formation. Ph.D. dissertation, Monash University, 167 pp.

  • Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 20272043, https://doi.org/10.1175/1520-0493(1999)127<2027:LSPAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1977: Tropical storm formation from easterly waves: A criterion for development. J. Atmos. Sci., 34, 10071022, https://doi.org/10.1175/1520-0469(1977)034<1007:TSFFEW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1987: Month-to-month variability of the Atlantic tropical circulation and its relationship to tropical storm formation. Mon. Wea. Rev., 115, 25982614, https://doi.org/10.1175/1520-0493(1987)115<2598:MTMVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. D. Maloney, 2000: Effect of ENSO and the MJO on western North Pacific tropical cyclones. Geophys. Res. Lett., 27, 17391742, https://doi.org/10.1029/1999GL011043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., S. J. Camargo, and A. H. Sobel, 2011: A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 23352357, https://doi.org/10.1175/2010JCLI3811.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomita, T., T. Yoshikane, and T. Yasunari, 2004: Biennial and lower-frequency variability observed in the early summer climate in the western North Pacific. J. Climate, 17, 42544266, https://doi.org/10.1175/JCLI3200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661077, https://doi.org/10.1038/nature06423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verdon, D. C., and S. W. Franks, 2006: Long-term behaviour of ENSO: Interactions with the PDO over the past 400 years inferred from paleoclimate records. Geophys. Res. Lett., 33, L06712, https://doi.org/10.1029/2005GL025052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1971: Spectral studies of tropospheric wave disturbances in the tropical western Pacific. Rev. Geophys., 9, 557612, https://doi.org/10.1029/RG009i003p00557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., and Coauthors, 2015: Hurricanes and climate: The U.S. CLIVAR working group on hurricanes. Bull. Amer. Meteor. Soc., 96, 9971017, https://doi.org/10.1175/BAMS-D-13-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629638, https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Zhou, 2008: Climate variation and prediction of rapid intensification in tropical cyclones in the western North Pacific. Meteor. Atmos. Phys., 99, 116, https://doi.org/10.1007/s00703-006-0238-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and R. Lukas, 1999: Roles of the western North Pacific wind variation in thermocline adjustment and ENSO phase transition. J. Meteor. Soc. Japan, 77, 116, https://doi.org/10.2151/jmsj1965.77.1_1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and K. M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14, 40734090, https://doi.org/10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and L. Wu, 2016: Interannual shift of the tropical upper-tropospheric trough and its influence on tropical cyclone formation over the western North Pacific. J. Climate, 29, 42034211, https://doi.org/10.1175/JCLI-D-15-0653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and L. Wu, 2018: Projection of North Pacific tropical upper-tropospheric trough in CMIP5 models: Implications for changes in tropical cyclone formation locations. J. Climate, 31, 761774, https://doi.org/10.1175/JCLI-D-17-0292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., B. Wang, and L. Wu, 2019: Abrupt breakdown of the predictability of early season typhoon frequency at the beginning of the twenty-first century. Climate Dyn., 52, 38093822, https://doi.org/10.1007/s00382-018-4350-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and Coauthors, 2014: How well do global climate models simulate the variability of Atlantic tropical cyclones associated with ENSO? J. Climate, 27, 56735692, https://doi.org/10.1175/JCLI-D-13-00625.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and H. Liu, 2016: PDO modulation of ENSO effect on tropical cyclone rapid intensification in the western North Pacific. Climate Dyn., 46, 1528, https://doi.org/10.1007/s00382-015-2563-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 648 pp.

  • Wu, L., Z. P. Wen, R. H. Huang, and R. G. Wu, 2012: Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western North Pacific. Mon. Wea. Rev., 140, 140150, https://doi.org/10.1175/MWR-D-11-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., C. Wang, and B. Wang, 2015: Westward shift of western North Pacific tropical cyclogenesis. Geophys. Res. Lett., 42, 15371542, https://doi.org/10.1002/2015GL063450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Wang, 2000: Interannual variability of summer monsoon onset over the western North Pacific and the underlying processes. J. Climate, 13, 24832501, https://doi.org/10.1175/1520-0442(2000)013<2483:IVOSMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing Central Pacific warming after the late 1990s. Climate Dyn., 41, 327340, https://doi.org/10.1007/s00382-012-1427-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., and Coauthors, 2015: Beyond weather time-scale prediction for Hurricane Sandy and Super Typhoon Haiyan in a global climate model. Mon. Wea. Rev., 143, 524535, https://doi.org/10.1175/MWR-D-14-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoi, S., and Y. N. Takayabu, 2009: Multi-model projection of global warming impact on tropical cyclone genesis frequency over the western North Pacific. J. Meteor. Soc. Japan, 87, 525538, https://doi.org/10.2151/jmsj.87.525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoi, S., Y. N. Takayabu, and J. C. Chan, 2009: Tropical cyclone genesis frequency over the western North Pacific simulated in medium-resolution coupled general circulation models. Climate Dyn., 33, 665683, https://doi.org/10.1007/s00382-009-0593-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., M. M. Lu, and S. T. Kim, 2012: A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990. Environ. Res. Lett., 7, 034025, https://doi.org/10.1088/1748-9326/7/3/034025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., 1991: The interaction of planetary-scale tropical easterly waves with topography: A mechanism for the initiation of tropical cyclones. J. Atmos. Sci., 48, 12171230, https://doi.org/10.1175/1520-0469(1991)048<1217:TIOPST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zehr, R. M., 1992: Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep. NESDIS 61, U.S. Department of Commerce, 181 pp.

  • Zhang, Q., L. Wu, and Q. Liu, 2009: Tropical cyclone damages in China 1983–2006. Bull. Amer. Meteor. Soc., 90, 489495, https://doi.org/10.1175/2008BAMS2631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and G. B. Raga, 2014: The influence of large-scale circulations on the extremely inactive tropical cyclone activity in 2010 over the western North Pacific. Atmósfera, 27, 353365, https://doi.org/10.1016/S0187-6236(14)70034-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and G. B. Raga, 2015: On the distinct interannual variability of tropical cyclone activity over the eastern North Pacific. Atmósfera, 28, 161178, https://doi.org/10.20937/ATM.2015.28.03.02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and C. Wang, 2016: Interdecadal modulation on the relationship between ENSO and typhoon activity during the late season in the western North Pacific. Climate Dyn., 47, 315328, https://doi.org/10.1007/s00382-015-2837-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and C. Wang, 2019: On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer. Climate Dyn., 52, 275288, https://doi.org/10.1007/S00382-018-4136-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., L. Wu, and W. Zhou, 2011: Interannual changes of tropical cyclone intensity in the western North Pacific. J. Meteor. Soc. Japan, 89, 243253, https://doi.org/10.2151/jmsj.2011-305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., P.-S. Chu, P.-C. Hsu, and H. Murakami, 2014: Exploratory analysis of extremely low tropical cyclone activity during the late-season of 2010 and 1998 over the western North Pacific and the South China Sea. J. Adv. Model. Earth Syst., 6, 11411153, https://doi.org/10.1002/2014MS000381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., X. Jiang, and L. Wu, 2015a: Modulation of northwest Pacific tropical cyclone genesis by the intraseasonal variability. J. Meteor. Soc. Japan, 93, 8197, https://doi.org/10.2151/jmsj.2015-006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., R. Yoshida, and G. B. Raga, 2015b: Impact of the Madden–Julian oscillation on western North Pacific tropical cyclogenesis associated with large-scale patterns. J. Appl. Meteor. Climatol., 54, 14131429, https://doi.org/10.1175/JAMC-D-14-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., X. Jiang, and L. Wu, 2016: Boreal summer synoptic-scale waves over the western North Pacific in multi-model simulations. J. Climate, 29, 44874508, https://doi.org/10.1175/JCLI-D-15-0696.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., S. Chen, P. J. Klotzbach, and G. B. Raga, 2018a: Impact of the extended boreal summer intraseasonal oscillation on western North Pacific tropical cloud cluster genesis productivity. J. Climate, 31, 91759191, https://doi.org/10.1175/JCLI-D-18-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., X. Duan, G. B. Raga, and P. J. Klotzbach, 2018b: Changes in characteristics of rapidly intensifying western North Pacific tropical cyclones related to climate regime shifts. J. Climate, 31, 81638179, https://doi.org/10.1175/JCLI-D-18-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., S. Chen, G. B. Raga, P. J. Klotzbach, and L. Wu, 2019: Recent decrease in genesis productivity of tropical cloud clusters over the western North Pacific. Climate Dyn., 52, 58195831, https://doi.org/10.1007/S00382-018-4477-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., and X. Cui, 2014: Interdecadal change of the linkage between the North Atlantic Oscillation and the tropical cyclone frequency over the western North Pacific. Sci. China Earth Sci., 57, 21482155, https://doi.org/10.1007/s11430-014-4862-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., and B. Wang, 2007: Transition from an eastern Pacific upper-level mixed Rossby–gravity wave to a western Pacific tropical cyclone. Geophys. Res. Lett., 34, L24801, https://doi.org/10.1029/2007GL031831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zong, H., and L. Wu, 2015a: Re-examination of tropical cyclone formation in monsoon troughs over the western North Pacific. Adv. Atmos. Sci., 32, 924934, https://doi.org/10.1007/s00376-014-4115-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zong, H., and L. Wu, 2015b: Synoptic-scale influences on tropical cyclone formation within the western North Pacific monsoon trough. Mon. Wea. Rev., 143, 34213433, https://doi.org/10.1175/MWR-D-14-00321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1570 810 294
PDF Downloads 715 78 4