Mechanisms Reducing ENSO Amplitude and Asymmetry via an Enhanced Seasonal Cycle in the Mid-Holocene

Tomoki Iwakiri Atmosphere and Ocean Research Institute, The University of Tokyo, Tokyo, Japan

Search for other papers by Tomoki Iwakiri in
Current site
Google Scholar
PubMed
Close
and
Masahiro Watanabe Atmosphere and Ocean Research Institute, The University of Tokyo, Tokyo, Japan

Search for other papers by Masahiro Watanabe in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Paleo proxy records have suggested that El Niño–Southern Oscillation (ENSO) variability during the mid-Holocene [8200 to 4200 years ago (8.2–4.2 ka)] was weaker than during the instrumental periods, but the mechanisms remain unclear. We examined processes of ENSO suppression using a coupled general circulation model (CGCM) that simulates ENSO amplitude and skewness under the present climate reasonably well. Two long simulations were performed: one using the preindustrial condition (CTRL) and the other using the 8-ka insolation having a greater seasonal cycle (MH8K). Consistent with proxy records and previous modeling studies, the ENSO amplitude weakened by 20% in MH8K compared to CTRL, mainly because of reduced thermocline feedback during the mature and decay phases. The weak thermocline feedback, likely a result of the loose equatorial thermocline in the mid-Holocene, suppresses the occurrence of extreme El Niño events and consequently explains the reduction in both ENSO amplitude and asymmetry. In MH8K, strengthened trade winds over the western-central Pacific Ocean act to cool the surface via evaporation while warmer water in the southern subtropical Pacific is transported beneath the equatorial thermocline, both contributing to diffuse the thermocline. Multimodel simulations for the mid-Holocene showed mean state changes and ENSO weakening similar to MH8K, but most models did not show reduced ENSO skewness, probably because of the failure in reproducing extreme El Niño events under the present climate.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: T. Iwakiri, iwakiri@aori.u-tokyo.ac.jp

Abstract

Paleo proxy records have suggested that El Niño–Southern Oscillation (ENSO) variability during the mid-Holocene [8200 to 4200 years ago (8.2–4.2 ka)] was weaker than during the instrumental periods, but the mechanisms remain unclear. We examined processes of ENSO suppression using a coupled general circulation model (CGCM) that simulates ENSO amplitude and skewness under the present climate reasonably well. Two long simulations were performed: one using the preindustrial condition (CTRL) and the other using the 8-ka insolation having a greater seasonal cycle (MH8K). Consistent with proxy records and previous modeling studies, the ENSO amplitude weakened by 20% in MH8K compared to CTRL, mainly because of reduced thermocline feedback during the mature and decay phases. The weak thermocline feedback, likely a result of the loose equatorial thermocline in the mid-Holocene, suppresses the occurrence of extreme El Niño events and consequently explains the reduction in both ENSO amplitude and asymmetry. In MH8K, strengthened trade winds over the western-central Pacific Ocean act to cool the surface via evaporation while warmer water in the southern subtropical Pacific is transported beneath the equatorial thermocline, both contributing to diffuse the thermocline. Multimodel simulations for the mid-Holocene showed mean state changes and ENSO weakening similar to MH8K, but most models did not show reduced ENSO skewness, probably because of the failure in reproducing extreme El Niño events under the present climate.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: T. Iwakiri, iwakiri@aori.u-tokyo.ac.jp
Save
  • An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412, https://doi.org/10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., and J. Choi, 2014: Mid-Holocene tropical Pacific climate state, annual cycle, and ENSO in PMIP2 and PMIP3. Climate Dyn., 43, 957970, https://doi.org/10.1007/s00382-013-1880-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., and J.-W. Kim, 2017: Role of nonlinear ocean dynamic response to wind on the asymmetrical transition of El Niño and La Niña. Geophys. Res. Lett., 44, 393400, https://doi.org/10.1002/2016GL071971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., and H. Bong, 2018: Feedback process responsible for the suppression of ENSO activity during the mid-Holocene. Theor. Appl. Climatol., 132, 779790, https://doi.org/10.1007/s00704-017-2117-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berger, A. L., 1978: Long-term variations of daily insolation and quaternary climatic changes. J. Atmos. Sci., 35, 23622367, https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., S. P. Harrison, M. Kageyama, P. J. Bartlein, V. Masson-Delmotte, A. Abe-Ouchi, B. Otto-Bliesner, and Y. Zhao, 2012: Evaluation of climate models using palaeoclimatic data. Nat. Climate Change, 2, 417424, https://doi.org/10.1038/nclimate1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., 2003: Climate forcing during the Holocene. PAGES News, 11, 1819, https://doi.org/10.22498/pages.11.2-3.18.

  • Burgers, G., and D. B. Stephenson, 1999: The “normality” of El Niño. Geophys. Res. Lett., 26, 10271030, https://doi.org/10.1029/1999GL900161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2018: Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564, 201206, https://doi.org/10.1038/s41586-018-0776-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carré, M., J. P. Sachs, S. Purca, A. J. Schauer, P. Braconnot, R. A. Falcón, M. Julien, and D. Lavallée, 2014: Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific. Science, 345, 10451048, https://doi.org/10.1126/science.1252220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., M. A. Cane, A. T. Wittenberg, and D. Chen, 2017: ENSO in the CMIP5 simulations: Life cycles, diversity, and responses to climate change. J. Climate, 30, 775801, https://doi.org/10.1175/JCLI-D-15-0901.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., S. S. Hoffmann, D. C. Lund, K. M. Cobb, J. Emile-Geay, and J. F. Adkins, 2016: A high-resolution speleothem record of western equatorial Pacific rainfall: Implications for Holocene ENSO evolution. Earth Planet. Sci. Lett., 442, 6171, https://doi.org/10.1016/j.epsl.2016.02.050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, K.-Y., G. A. Vecchi, and A. T. Wittenberg, 2013: ENSO transition, duration, and amplitude asymmetries: Role of the nonlinear wind stress coupling in a conceptual model. J. Climate, 26, 94629476, https://doi.org/10.1175/JCLI-D-13-00045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, and M. A. Cane, 2000: Suppression of El Niño during the mid-Holocene by changes in the Earth’s orbit. Paleoceanography, 15, 731737, https://doi.org/10.1029/1999PA000466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cobb, K. M., N. Westphal, H. R. Sayani, J. T. Watson, E. Di Lorenzo, H. Cheng, R. L. Edwards, and C. D. Charles, 2013: Highly variable El Niño–Southern Oscillation throughout the Holocene. Science, 339, 6770, https://doi.org/10.1126/science.1228246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, https://doi.org/10.1038/ngeo868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., and Coauthors, 2016: Links between tropical Pacific seasonal, interannual and orbital variability during the Holocene. Nat. Geosci., 9, 168173, https://doi.org/10.1038/ngeo2608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erb, M. P., A. J. Broccoli, N. T. Graham, A. C. Clement, A. T. Wittenberg, and G. A. Vecchi, 2015: Response of the equatorial Pacific seasonal cycle to orbital forcing. J. Climate, 28, 92589276, https://doi.org/10.1175/JCLI-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, F. S., J. N. Brown, C. Langlais, S. J. Marsland, A. T. Wittenberg, and N. J. Holbrook, 2014: Effectiveness of the Bjerknes stability index in representing ocean dynamics. Climate Dyn., 43, 23992414, https://doi.org/10.1007/s00382-014-2062-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., 2006: El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26, 329348, https://doi.org/10.1007/s00382-005-0084-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. van Oldenborgh, and T. Stockdale, 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325340, https://doi.org/10.1175/2008BAMS2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., 2017: A reduction in the asymmetry of ENSO amplitude due to global warming: The role of atmospheric feedback. Geophys. Res. Lett., 44, 85768584, https://doi.org/10.1002/2017GL074842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, M., and F.-F. Jin, 2017: Subsurface nonlinear dynamical heating and ENSO asymmetry. Geophys. Res. Lett., 44, 12 42712 435, https://doi.org/10.1002/2017GL075771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirahara, S., M. Ishii, and Y. Fukuda, 2014: Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate, 27, 5775, https://doi.org/10.1175/JCLI-D-12-00837.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imada, Y., H. Tatebe, M. Watanabe, M. Ishii, and M. Kimoto, 2016: South Pacific influence on the termination of El Niño in 2014. Sci. Rep., 6, 30341, https://doi.org/10.1038/srep30341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1996: Tropical ocean–atmosphere interaction, the Pacific cold tongue, and the El Niño–Southern Oscillation. Science, 274, 7678, https://doi.org/10.1126/science.274.5284.76.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., J. D. Neelin, and M. Ghil, 1994: El Niño on the devil’s staircase: Annual subharmonic steps to chaos. Science, 264, 7072, https://doi.org/10.1126/science.264.5155.70.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S.-I. An, A. Timmermann, and J. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30, 1120, https://doi.org/10.1029/2002GL016356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S. T. Kim, and L. Bejarano, 2006: A coupled-stability index for ENSO. Geophys. Res. Lett., 33, L23708, https://doi.org/10.1029/2006GL027221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-T., and F.-F. Jin, 2011a: An ENSO stability analysis. Part I: Results from a hybrid coupled model. Climate Dyn., 36, 15931607, https://doi.org/10.1007/s00382-010-0796-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-T., and F.-F. Jin, 2011b: An ENSO stability analysis. Part II: Results from the twentieth and twenty-first century simulations of the CMIP3 models. Climate Dyn., 36, 16091627, https://doi.org/10.1007/s00382-010-0872-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-T., W. Cai, F.-F. Jin, A. Santoso, L. Wu, E. Guilyardi, and S.-I. An, 2014: Response of El Niño sea surface temperature variability to greenhouse warming. Nat. Climate Change, 4, 786790, https://doi.org/10.1038/nclimate2326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohyama, T., and D. L. Hartmann, 2017: Nonlinear ENSO warming suppression (NEWS). J. Climate, 30, 42274251, https://doi.org/10.1175/JCLI-D-16-0541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koutavas, A., P. B. deMenocal, G. C. Olive, and J. Lynch-Stieglitz, 2006: Mid-Holocene El Niño–Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments. Geology, 34, 993996, https://doi.org/10.1130/G22810A.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, J., X.-Q. Yang, and D.-Z. Sun, 2017: Factors determining the asymmetry of ENSO. J. Climate, 30, 60976106, https://doi.org/10.1175/JCLI-D-16-0923.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and S.-P. Xie, 1994: Equatorward propagation of coupled air–sea disturbances with application to the annual cycle of the eastern tropical Pacific. J. Atmos. Sci., 51, 38073822, https://doi.org/10.1175/1520-0469(1994)051<3807:EPOCAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., J. Kutzbach, and L. Wu, 2000: Modeling climate shift of El Niño variability in the Holocene. Geophys. Res. Lett., 27, 22652268, https://doi.org/10.1029/2000GL011452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., E. Brady, and J. Lynch-Stieglitz, 2003: Global ocean response to orbital forcing in the Holocene. Paleoceanography, 18, 1041, https://doi.org/10.1029/2002PA000819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., Z. Lu, X. Wen, B. L. Otto-Bliesner, A. Timmermann, and K. M. Cobb, 2014: Evolution and forcing mechanisms of El Niño over the past 21,000 years. Nature, 515, 550553, https://doi.org/10.1038/nature13963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, P., J. P. McCreary, and B. A. Klinger, 1998: Meridional circulation cells and the source waters of the Pacific Equatorial Undercurrent. J. Phys. Oceanogr., 28, 6284, https://doi.org/10.1175/1520-0485(1998)028<0062:MCCATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Z., and Z. Liu, 2019: Orbital modulation of ENSO seasonal phase locking. Climate Dyn., 52, 43294350, https://doi.org/10.1007/s00382-018-4382-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Z., Z. Liu, J. Zhu, and K. M. Cobb, 2018: A review of paleo El Niño–Southern Oscillation. Atmosphere, 9, 130, https://doi.org/10.3390/atmos9040130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luan, Y., P. Braconnot, Y. Yu, W. Zheng, and O. Marti, 2012: Early and mid-Holocene climate in the tropical Pacific: Seasonal cycle and interannual variability induced by insolation changes. Climate Past, 8, 10931108, https://doi.org/10.5194/cp-8-1093-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maes, C., M. J. McPhaden, and D. Behringer, 2002: Signatures of salinity variability in tropical Pacific Ocean dynamic height anomalies. J. Geophys. Res., 107, 8012, https://doi.org/10.1029/2000JC000737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., P. R. Gent, J. M. Arblaster, B. L. Otto-Bliesner, E. C. Brady, and A. Craig, 2001: Factors that affect the amplitude of El Niño in global coupled climate models. Climate Dyn., 17, 515526, https://doi.org/10.1007/PL00007929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., E. C. Brady, S.-I. Shin, Z. Liu, and C. Shields, 2003: Modeling El Niño and its tropical teleconnections during the last glacial–interglacial cycle. Geophys. Res. Lett., 30, 2198, https://doi.org/10.1029/2003GL018553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pausata, F. S. R., and Coauthors, 2017: Greening of the Sahara suppressed ENSO activity during the mid-Holocene. Nat. Commun., 8, 16020, https://doi.org/10.1038/ncomms16020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rein, B., A. Lückge, L. Reinhardt, F. Sirocko, A. Wolf, and W.-C. Dullo, 2005: El Niño variability off Peru during the last 20,000 years. Paleoceanography, 20, PA4003, https://doi.org/10.1029/2004PA001099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, W. H. G., D. S. Battisti, and A. W. Tudhope, 2014: ENSO in the mid-Holocene according to CSM and HadCM3. J. Climate, 27, 12231242, https://doi.org/10.1175/JCLI-D-13-00251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2018: Human influence on the seasonal cycle of tropospheric temperature. Science, 361, eaas8806, https://doi.org/10.1126/science.aas8806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, N., A. J. Miller, M. A. Alexander, and C. Deser, 1999: Subduction of decadal North Pacific temperature anomalies: Observations and dynamics. J. Phys. Oceanogr., 29, 10561070, https://doi.org/10.1175/1520-0485(1999)029<1056:SODNPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, K., A. Timmermann, N. Schneider, F.-F. Jin, and M. F. Stuecker, 2014: ENSO seasonal synchronization theory. J. Climate, 27, 52855310, https://doi.org/10.1175/JCLI-D-13-00525.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinke, S., M. Mohtadi, M. Prange, V. Varma, D. Pittauerova, and H. W. Fischer, 2014: Mid- to late-Holocene Australian–Indonesian summer monsoon variability. Quat. Sci. Rev., 93, 142154, https://doi.org/10.1016/j.quascirev.2014.04.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1979: Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl. Acad. Sci. USA, 76, 30513055, https://doi.org/10.1073/pnas.76.7.3051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., F.-F. Jin, A. Timmermann, and S. McGregor, 2015: Combination mode dynamics of the anomalous northwest Pacific anticyclone. J. Climate, 28, 10931111, https://doi.org/10.1175/JCLI-D-14-00225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, J., R. Zhang, T. Li, X. Rong, J.-S. Kug, and C.-C. Hong, 2010: Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605617, https://doi.org/10.1175/2009JCLI2894.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., F. Wang, and D.-Z. Sun, 2016: Weak ENSO asymmetry due to weak nonlinear air–sea interaction in CMIP5 climate models. Adv. Atmos. Sci., 33, 352364, https://doi.org/10.1007/s00376-015-5018-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., and M. Watanabe, 2016: Pacific trade winds accelerated by aerosol forcing over the past two decades. Nat. Climate Change, 6, 768772, https://doi.org/10.1038/nclimate2996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., F.-F. Jin, and J. Abshagen, 2003: A nonlinear theory for El Niño bursting. J. Atmos. Sci., 60, 152165, https://doi.org/10.1175/1520-0469(2003)060<0152:ANTFEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tziperman, E., L. Stone, M. A. Cane, and H. Jarosh, 1994: El Niño chaos: Overlapping of resonances between the seasonal cycle and the Pacific ocean–atmosphere oscillator. Science, 264, 7274, https://doi.org/10.1126/science.264.5155.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, https://doi.org/10.1175/2010JCLI3679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., M. Chikira, Y. Imada, and M. Kimoto, 2011: Convective control of ENSO simulated in MIROC. J. Climate, 24, 543562, https://doi.org/10.1175/2010JCLI3878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., H. Shiogama, H. Tatebe, M. Hayashi, M. Ishii, and M. Kimoto, 2014: Contribution of natural decadal variability to global warming acceleration and hiatus. Nat. Climate Change, 4, 893897, https://doi.org/10.1038/nclimate2355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, R., M. Spall, and J. Marshall, 1995: Does Stommel’s mixed layer “demon” work? J. Phys. Oceanogr., 25, 30893102, https://doi.org/10.1175/1520-0485(1995)025<3089:DSMLW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, W., P. Braconnot, E. Guilyardi, U. Merkel, and Y. Yu, 2008: ENSO at 6ka and 21ka from ocean–atmosphere coupled model simulations. Climate Dyn., 30, 745762, https://doi.org/10.1007/s00382-007-0320-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1423 495 148
PDF Downloads 696 95 9