A Systematic Approach to Assessing the Sources and Global Impacts of Errors in Climate Models

S. D. Schubert Global Modeling and Assimilation Office, NASA/GSFC, Greenbelt, and Science Systems and Applications, Inc., Lanham, Maryland

Search for other papers by S. D. Schubert in
Current site
Google Scholar
PubMed
Close
,
Y. Chang Global Modeling and Assimilation Office, NASA/GSFC, Greenbelt, and Goddard Earth Sciences Technology and Research, Morgan State University, Baltimore, Maryland

Search for other papers by Y. Chang in
Current site
Google Scholar
PubMed
Close
,
H. Wang Science Systems and Applications, Inc., Lanham, Maryland

Search for other papers by H. Wang in
Current site
Google Scholar
PubMed
Close
,
R. D. Koster Global Modeling and Assimilation Office, NASA/GSFC, Greenbelt, Maryland

Search for other papers by R. D. Koster in
Current site
Google Scholar
PubMed
Close
, and
A. M. Molod Global Modeling and Assimilation Office, NASA/GSFC, Greenbelt, Maryland

Search for other papers by A. M. Molod in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We outline a framework for identifying the geographical sources of biases in climate models. By forcing the model with time-averaged short-term analysis increments [tendency bias corrections (TBCs)] over well-defined regions, we can quantify how the associated reduced tendency errors in these regions manifest themselves both locally and remotely through large-scale teleconnections. Companion experiments in which the model is fully corrected [constrained to remain close to the analysis at each time step, termed replay (RPL)] in the various regions provide an upper bound to the local and remote TBC impacts. An example is given based on MERRA-2 and the NASA/GMAO GEOS AGCM used to generate MERRA-2. The results highlight the ability of the approach to isolate the geographical sources of some of the long-standing boreal summer biases of the GEOS model, including a stunted North Pacific summer jet, a dry bias in the U.S. Great Plains, and a warm bias over most of the Northern Hemisphere land. In particular, we show that the TBC over a region that encompasses Tibet has by far the largest impact (compared with all other regions) on the NH summer jets and related variables, leading to significant improvements in the simulation of North American temperature and, to a lesser degree, precipitation. It is further shown that the results of the regional TBC experiments are for the most part linear in the summer hemisphere, allowing a robust interpretation of the results.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Siegfried D. Schubert, siegfried.d.schubert@nasa.gov

Abstract

We outline a framework for identifying the geographical sources of biases in climate models. By forcing the model with time-averaged short-term analysis increments [tendency bias corrections (TBCs)] over well-defined regions, we can quantify how the associated reduced tendency errors in these regions manifest themselves both locally and remotely through large-scale teleconnections. Companion experiments in which the model is fully corrected [constrained to remain close to the analysis at each time step, termed replay (RPL)] in the various regions provide an upper bound to the local and remote TBC impacts. An example is given based on MERRA-2 and the NASA/GMAO GEOS AGCM used to generate MERRA-2. The results highlight the ability of the approach to isolate the geographical sources of some of the long-standing boreal summer biases of the GEOS model, including a stunted North Pacific summer jet, a dry bias in the U.S. Great Plains, and a warm bias over most of the Northern Hemisphere land. In particular, we show that the TBC over a region that encompasses Tibet has by far the largest impact (compared with all other regions) on the NH summer jets and related variables, leading to significant improvements in the simulation of North American temperature and, to a lesser degree, precipitation. It is further shown that the results of the regional TBC experiments are for the most part linear in the summer hemisphere, allowing a robust interpretation of the results.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Siegfried D. Schubert, siegfried.d.schubert@nasa.gov
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albergel, C., E. Dutra, S. Munier, J.-C. Calvet, J. Munoz-Sabater, P. de Rosnay, and G. Balsamo, 2018: ERA-5 and ERA-Interim driven ISBA land surface model simulations: Which one performs better? Hydrol. Earth Syst. Sci., 22, 35153532, https://doi.org/10.5194/hess-22-3515-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., and G. L. Stephens, 2011: Spatial statistics of likely convective clouds in CloudSat data. J. Geophys. Res., 116, D04104, https://doi.org/10.1029/2010JD014444.

    • Search Google Scholar
    • Export Citation
  • Bhargava, K., E. Kalnay, J. A. Carton, and F. Yang, 2018: Estimation of systematic errors in the GFS using analysis increments. J. Geophys. Res. Atmos., 123, 16261637, https://doi.org/10.1002/2017JD027423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • C3S, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed June 2019, https://cds.climate.copernicus.eu/cdsapp#!/home.

  • Chang, Y., S. D. Schubert, R. D. Koster, A. M. Molod, and H. Wang, 2019: Tendency bias correction in coupled and uncoupled global climate models with a focus on impacts over North America. J. Climate, 32, 639661, https://doi.org/10.1175/JCLI-D-18-0598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., S. M. J. Nowicki, B. Zhao, and M. J. Suárez, 2014: Evaluation of the surface representation of the Greenland Ice Sheet in a general circulation model. J. Climate, 27, 48354856, https://doi.org/10.1175/JCLI-D-13-00635.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., and H. van den Dool, 2008: A global monthly land surface air temperature analysis for 1948–present. J. Geophys. Res., 113, D01103, https://doi.org/10.1029/2007JD008470.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., X. Jiang, J. Boyle, S. Malyshev, and S. Xie, 2006: Diagnosis of the summertime warm and dry bias over the U.S. Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett., 33, L18805, https://doi.org/10.1029/2006GL027567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klinker, E., and P. D. Sardeshmukh, 1992: The diagnosis of mechanical dissipation in the atmosphere from large-scale balance requirements. J. Atmos. Sci., 49, 608627, https://doi.org/10.1175/1520-0469(1992)049<0608:TDOMDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specification and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornhuber, K., V. Petoukhov, D. Karoly, S. Petri, S. Rahmstorf, and D. Coumou, 2017: Summertime planetary wave resonance in the Northern and Southern Hemispheres. J. Climate, 30, 61336150, https://doi.org/10.1175/JCLI-D-16-0703.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a general model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, https://doi.org/10.1029/2000JD900327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., W. Dong, M. Zhang, Y. Xie, W. Xue, J. Huang, and Y. Luo, 2017: Causes of model dry and warm bias over central U.S. and impact on climate projections. Nat. Commun., 8, 881, https://doi.org/10.1038/S41467-017-01040-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and Coauthors, 2015: An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models. J. Adv. Model. Earth Syst., 7, 18101827, https://doi.org/10.1002/2015MS000490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and Coauthors, 2018: CAUSES: On the role of surface energy budget errors to the warm surface air temperature error over the Central United States. J. Geophys. Res., 123, 28882909, https://doi.org/10.1002/2017JD027194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A. M., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, https://doi.org/10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morcrette, C. J., and Coauthors, 2018: Introduction to CAUSES: Description of weather and climate models and their near-surface temperature errors in 5 day hindcasts near the Southern Great Plains. J. Geophys. Res., 123, 26552683, https://doi.org/10.1002/2017JD027199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orbe, C., L. D. Oman, S. E. Strahan, D. W. Waugh, S. Pawson, L. L. Takacs, and A. M. Molod, 2017: Large-scale atmospheric transport in GEOS replay simulations. J. Adv. Model. Earth Syst., 9, 25452560, https://doi.org/10.1002/2017MS001053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., and Coauthors, 2004: Evaluating parameterizations in general circulation models: Climate simulation meets weather prediction. Bull. Amer. Meteor. Soc., 85, 19031916, https://doi.org/10.1175/BAMS-85-12-1903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putman, W., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, https://doi.org/10.1016/j.jcp.2007.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and T. N. Palmer, 2007: Using numerical weather prediction to assess climate models. Quart. J. Roy. Meteor. Soc., 133, 129146, https://doi.org/10.1002/qj.23.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S., and Y. Chang, 1996: An objective method for inferring sources of model error. Mon. Wea. Rev., 124, 325340, https://doi.org/10.1175/1520-0493(1996)124<0325:AOMFIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S., H. Wang, R. Koster, M. Suarez, and P. Groisman, 2014: Northern Eurasian heat waves and droughts. J. Climate, 27, 31693207, https://doi.org/10.1175/JCLI-D-13-00360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, A., 2018: Diagnosing the warm bias in the central United States, Eos Trans. Amer. Geophys. Union, 99, https://doi.org/10.1029/2018EO095669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takacs, L. L., M. J. Suárez, and R. Todling, 2018: The stability of incremental analysis update. Mon. Wea. Rev., 146, 32593275, https://doi.org/10.1175/MWR-D-18-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., and L. Yu, 1998: Steady response to tropical heating in wavy linear and nonlinear baroclinic models. J. Atmos. Sci., 55, 35653582, https://doi.org/10.1175/1520-0469(1998)055<3565:SRTTHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., and Coauthors, 2018: CAUSES: Attribution of surface radiation biases in NWP and climate models near the U.S. Southern Great Plains. J. Geophys. Res. Atmos., 123, 36123644, https://doi.org/10.1002/2017JD027188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1982: Seasonality of the local and remote atmospheric response to sea surface temperature anomalies. J. Atmos. Sci., 39, 4152, https://doi.org/10.1175/1520-0469(1982)039<0041:SITLAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., H. Ma, J. S. Boyle, S. A. Klein, and Y. Zhang, 2012: On the correspondence between short- and long-time-scale systematic errors in CAM4/CAM5 for the Year of Tropical Convection. J. Climate, 25, 79377955, https://doi.org/10.1175/JCLI-D-12-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., S. K. Frey, A. Boluwade, A. R. Erler, O. Khader, D. R. Lapen, and E. Sudicky, 2019: Evaluation of variability among different precipitation products in the Northern Great Plains. J. Hydrol. Reg. Stud., 24, 100608, https://doi.org/10.1016/J.EJRH.2019.100608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamada, T. J., M. Lee, M. Kanamitsu, and H. Kanamaru, 2012: Diurnal characteristics of rainfall over the contiguous United States and northern Mexico in the dynamically downscaled reanalysis dataset (US10). J. Hydrometeor., 13, 11421148, https://doi.org/10.1175/JHM-D-11-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., S. Xie, S. A. Klein, H.-y. Ma, S. Tang, K. Van Weverberg, C. J. Morcrette, and J. Petch, 2018: CAUSES: Diagnosis of the summertime warm bias in CMIP5 climate models at the ARM Southern Great Plains site. J. Geophys. Res. Atmos., 123, 29682992, https://doi.org/10.1002/2017JD027200.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 395 100 10
PDF Downloads 317 71 11