An Assessment of NASA’s GMAO MERRA-2 Reanalysis Surface Winds

D. Carvalho Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, and Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, Maryland

Search for other papers by D. Carvalho in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The quality of MERRA-2 surface wind fields was assessed by comparing them with 10 years of measurements from a wide range of surface wind observing platforms. This assessment includes a comparison of MERRA-2 global surface wind fields with the ones from its predecessor, MERRA, to assess if GMAO’s latest reanalyses improved the representation of the global surface winds. At the same time, surface wind fields from other modern reanalyses—NCEP-CFSR, ERA-Interim, and JRA-55—were also included in the comparisons to evaluate MERRA-2 global surface wind fields in the context of its contemporary reanalyses. Results show that MERRA-2, CFSR, ERA-Interim, and JRA-55 show similar error metrics while MERRA consistently shows the highest errors. Thus, when compared with wind observations, the accuracy of MERRA-2 surface wind fields represents a clear improvement over its predecessor MERRA and is in line with the other contemporary reanalyses in terms of the representation of global near-surface wind fields. All reanalyses showed a tendency to underestimate ocean surface winds (particularly in the tropics) and, oppositely, to overestimate inland surface winds (except JRA-55, which showed a global tendency to underestimate the wind speeds); to represent the wind direction rotated clockwise in the Northern Hemisphere (positive bias) and anticlockwise in the Southern Hemisphere (negative bias), with the exception of JRA-55; and to show higher errors near the poles and in the ITCZ, particularly in the equatorial western coasts of Central America and Africa. However, MERRA-2 showed substantially lower wind errors in the poles when compared with the other reanalyses.

This article is included in the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) special collection.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David Carvalho, david.carvalho@nasa.gov

Abstract

The quality of MERRA-2 surface wind fields was assessed by comparing them with 10 years of measurements from a wide range of surface wind observing platforms. This assessment includes a comparison of MERRA-2 global surface wind fields with the ones from its predecessor, MERRA, to assess if GMAO’s latest reanalyses improved the representation of the global surface winds. At the same time, surface wind fields from other modern reanalyses—NCEP-CFSR, ERA-Interim, and JRA-55—were also included in the comparisons to evaluate MERRA-2 global surface wind fields in the context of its contemporary reanalyses. Results show that MERRA-2, CFSR, ERA-Interim, and JRA-55 show similar error metrics while MERRA consistently shows the highest errors. Thus, when compared with wind observations, the accuracy of MERRA-2 surface wind fields represents a clear improvement over its predecessor MERRA and is in line with the other contemporary reanalyses in terms of the representation of global near-surface wind fields. All reanalyses showed a tendency to underestimate ocean surface winds (particularly in the tropics) and, oppositely, to overestimate inland surface winds (except JRA-55, which showed a global tendency to underestimate the wind speeds); to represent the wind direction rotated clockwise in the Northern Hemisphere (positive bias) and anticlockwise in the Southern Hemisphere (negative bias), with the exception of JRA-55; and to show higher errors near the poles and in the ITCZ, particularly in the equatorial western coasts of Central America and Africa. However, MERRA-2 showed substantially lower wind errors in the poles when compared with the other reanalyses.

This article is included in the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) special collection.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David Carvalho, david.carvalho@nasa.gov
Save
  • Alvarez, I., M. M. Gomez-Gesteira, M. deCastro, and D. Carvalho, 2014: Comparison of different wind products and buoy wind data with seasonality and interannual climate variability in the southern Bay of Biscay (2000–2009). Deep-Sea Res. II, 106, 3848, https://doi.org/10.1016/j.dsr2.2013.09.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739, https://doi.org/10.1175/2011JCLI4175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., J.-D. Chern, D. Mocko, F. R. Robertson, and A. M. da Silva, 2015: Evaluating observation influence on regional water budgets in reanalyses. J. Climate, 28, 36313649, https://doi.org/10.1175/JCLI-D-14-00623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., D. M. Legler, J. J. O’Brien, and S. R. Smith, 2003: SeaWinds validation with research vessels. J. Geophys. Res., 108, 3019, https://doi.org/10.1029/2001JC001028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, D., A. Rocha, M. Gómez-Gesteira, and C. Silva Santos, 2013: Comparison between CCMP, QuikSCAT and buoy winds along the Iberian Peninsula coast. Remote Sens. Environ., 137, 173183, https://doi.org/10.1016/j.rse.2013.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, D., A. Rocha, M. Gómez-Gesteira, and C. Silva Santos, 2014a: Comparison of reanalyzed, analyzed, satellite-retrieved and NWP modelled winds with buoy data along the Iberian Peninsula coast. Remote Sens. Environ., 152, 480492, https://doi.org/10.1016/j.rse.2014.07.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, D., A. Rocha, M. Gómez-Gesteira, and C. Silva Santos, 2014b: WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal. Appl. Energy, 117, 116126, https://doi.org/10.1016/j.apenergy.2013.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, D., A. Rocha, M. Gómez-Gesteira, and C. Silva Santos, 2014c: Offshore wind energy resource simulation forced by different reanalyses: Comparison with observed data in the Iberian Peninsula. Appl. Energy, 134, 5764, https://doi.org/10.1016/j.apenergy.2014.08.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, D., A. Rocha, M. Gómez-Gesteira, and C. Silva Santos, 2017: Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys—A comparative study for the Iberian Peninsula Atlantic coast. Renewable Energy, 102B, 433444, https://doi.org/10.1016/J.RENENE.2016.10.063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaudhuri, A. H., R. M. Ponte, G. Forget, and P. Heimbach, 2013: A comparison of atmospheric reanalysis surface products over the ocean and implications for uncertainties in air–sea boundary forcing. J. Climate, 26, 153170, https://doi.org/10.1175/JCLI-D-12-00090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaudhuri, A. H., R. M. Ponte, and A. T. Nguyen, 2014: A comparison of atmospheric reanalysis products for the Arctic Ocean and implications for uncertainties in air–sea fluxes. J. Climate, 27, 54115421, https://doi.org/10.1175/JCLI-D-13-00424.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. H. Freilich, 2005: Scatterometer-based assessment of 10-m wind analyses from the operational ECMWF and NCEP numerical weather prediction models. Mon. Wea. Rev., 133, 409429, https://doi.org/10.1175/MWR-2861.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decker, M., M. A. Brunke, Z. Wang, K. Sakaguchi, X. Zeng, and M. G. Bosilovich, 2011: Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J. Climate, 25, 19161944, https://doi.org/10.1175/JCLI-D-11-00004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, N. I., 1995: Statistical Analysis of Circular Data. Cambridge University Press, 277 pp.

  • Francis, J. A., 2002: Validation of reanalysis upper-level winds in the Arctic with independent rawinsonde data. Geophys. Res. Lett., 29, 1315, https://doi.org/10.1029/2001GL014578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, L. S., A. J. McDonald, G. E. Bodeker, E. C. Kathy, J. Lewis, and A. J. Paterson, 2017: A comparison of Loon balloon observations and stratospheric reanalysis products. Atmos. Chem. Phys., 17, 855866, https://doi.org/10.5194/acp-17-855-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., A. Hertzog, T. Rößler, O. Stein, and X. Wu, 2017: Intercomparison of meteorological analyses and trajectories in the Antarctic lower stratosphere with Concordiasi superpressure balloon observations. Atmos. Chem. Phys., 17, 80458061, https://doi.org/10.5194/acp-17-8045-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulst, S., and G. P. van Vledder, 2013: CFSR surface wind calibration for wave modelling purposes. 13th Int. Workshop on Wave Hindcasting and Forecasting and Coastal Hazards Symp., Banff, AB, Canada, Environment Canada, http://waveworkshop.org/13thWaves/Papers/2013_CFSR_10m_wind_calibration.pdf.

  • Jammalamadaka, S. R., and A. SenGupta, 2001: Topics in Circular Statistics. World Scientific, 336 pp.

    • Crossref
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

    • Crossref
    • Export Citation
  • Kara, A. B., A. J. Wallcraft, and M. A. Bourassa, 2008: Air–sea stability effects on the 10 m winds over the global ocean: Evaluations of air–sea flux algorithms. J. Geophys. Res., 113, C04009, https://doi.org/10.1029/2007JC004324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, P., S. Migliorini, and G. Kelly, 2015: Understanding atmospheric motion vector vertical representativity using a simulation study and first-guess departure statistics. J. Appl. Meteor. Climatol., 54, 24792500, https://doi.org/10.1175/JAMC-D-15-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. T., and W. Tang, 1996: Equivalent neutral wind. California Institute of Technology Jet Propulsion Laboratory Publ. 96-17, 22 pp.

  • Manney, G. L., and Coauthors, 2017: Reanalysis comparisons of upper tropospheric–lower stratospheric jets and multiple tropopauses. Atmos. Chem. Phys., 17, 11 54111 566, https://doi.org/10.5194/acp-17-11541-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarty, W., L. Coy, R. Gelaro, A. Huang, D. Merkova, E. B. Smith, M. Seinkiewicz, and K. Wargan, 2016: MERRA-2 input observations: Summary and assessment. NASA Rep. NASA/TM-2016-104606, Vol. 46, 61 pp.

  • Mears, C. A., D. K. Smith, and F. J. Wentz, 2001: Comparison of Special Sensor Microwave Imager and buoy-measured wind speeds from 1987 to 1997. J. Geophys. Res., 106, 11 71911 729, https://doi.org/10.1029/1999JC000097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA-2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnom sloe atmosfery (Basic laws of turbulent mixing in the atmosphere near the ground). Tr. Geofiz. Inst. AN SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., R. D. Koster, G. J. M. De Lannoy, B. A. Forman, Q. Liu, S. Mahanama, and A. Touré, 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, https://doi.org/10.1175/JCLI-D-10-05033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech. Rep. NASA/TM-2008-104606, Vol. 27, 118 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Rienecker369.pdf.

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, F. R., M. G. Bosilovich, J. Chen, and T. L. Miller, 2011: The effect of satellite observing system changes on MERRA water and energy fluxes. J. Climate, 24, 51975217, https://doi.org/10.1175/2011JCLI4227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallcraft, A. J., A. B. Kara, C. N. Barron, E. J. Metzger, R. L. Pauley, and M. A. Bourassa, 2009: Comparisons of monthly mean 10-m wind speeds from satellites and NWP products over the global ocean. J. Geophys. Res., 114, D16109, https://doi.org/10.1029/2008JD011696.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1764 496 51
PDF Downloads 1686 473 38