Non-Gaussian Cold-Side Temperature Distribution Tails and Associated Synoptic Meteorology

Paul C. Loikith Department of Geography, Portland State University, Portland, Oregon

Search for other papers by Paul C. Loikith in
Current site
Google Scholar
PubMed
Close
and
J. David Neelin Department of Oceanic and Atmospheric Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by J. David Neelin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Non-Gaussian cold side temperature distribution tails occur in spatially coherent patterns in winter and summer across the globe. Under such conditions, future changes in extreme cold temperature exceedances may be manifested in more complex ways than if the underlying distribution were Gaussian. For example, under a uniform warm shift, locations with shorter- or longer-than-Gaussian cold side tails would experience a more or less rapid decrease in the number of extreme cold threshold exceedances, respectively, compared to if the tail were Gaussian. In many places in the mid- to high latitudes, shorter-than-Gaussian cold tails occur where there is a climatological limit on the magnitude of cold air to be transported by synoptic flow. For example, some high-latitude regions are already among the coldest in the hemisphere, thus limiting the availability of extremely cold air, in an anomalous sense, that can be transported to the region. In other short tail regions, anomalously cold air originates from or travels over large water bodies, which limits the magnitude of the cold anomaly. Long tails are often present when the cold source region is downstream of the climatological flow, requiring a highly anomalous circulation pattern to transport the cold air. The synoptic evolution of extreme cold days at several short- and long-tailed weather stations are presented to help diagnose the mechanisms behind extreme cold temperatures under conditions of non-Gaussianity. This provides a mechanistic view of how extreme cold occurs at each location, as well as an explanation for the notable deviations from Gaussianity.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0344.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul C. Loikith, ploikith@pdx.edu

Abstract

Non-Gaussian cold side temperature distribution tails occur in spatially coherent patterns in winter and summer across the globe. Under such conditions, future changes in extreme cold temperature exceedances may be manifested in more complex ways than if the underlying distribution were Gaussian. For example, under a uniform warm shift, locations with shorter- or longer-than-Gaussian cold side tails would experience a more or less rapid decrease in the number of extreme cold threshold exceedances, respectively, compared to if the tail were Gaussian. In many places in the mid- to high latitudes, shorter-than-Gaussian cold tails occur where there is a climatological limit on the magnitude of cold air to be transported by synoptic flow. For example, some high-latitude regions are already among the coldest in the hemisphere, thus limiting the availability of extremely cold air, in an anomalous sense, that can be transported to the region. In other short tail regions, anomalously cold air originates from or travels over large water bodies, which limits the magnitude of the cold anomaly. Long tails are often present when the cold source region is downstream of the climatological flow, requiring a highly anomalous circulation pattern to transport the cold air. The synoptic evolution of extreme cold days at several short- and long-tailed weather stations are presented to help diagnose the mechanisms behind extreme cold temperatures under conditions of non-Gaussianity. This provides a mechanistic view of how extreme cold occurs at each location, as well as an explanation for the notable deviations from Gaussianity.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0344.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul C. Loikith, ploikith@pdx.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.80 MB)
Save
  • Ayarzagüena, B., and J. A. Screen, 2016: Future Arctic sea ice loss reduces severity of cold air outbreaks in midlatitudes. Geophys. Res. Lett., 43, 28012809, https://doi.org/10.1002/2016GL068092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentz, B. J., and Coauthors, 2010: Climate change and bark beetles of the western United States and Canada: Direct and indirect effects. BioScience, 60, 602613, https://doi.org/10.1525/bio.2010.60.8.6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caminade, C., J. M. Medlock, E. Ducheyne, K. M. McIntyre, S. Leach, M. Baylis, and A. P. Morse, 2012: Suitability of European climate for the Asian tiger mosquito Aedes albopictus: Recent trends and future scenarios. J. Roy. Soc. Interface, 9, 27082717, https://doi.org/10.1098/RSIF.2012.0138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, A. L., S. W. Taylor, J. Regniere, and L. Safranyik, 2003: Effect of climate change on range expansion by the mountain pine beetle in British Columbia. The Bark Beetles, Fuels, and Fire Bibliography, Paper 195, http://digitalcommons.usu.edu/barkbeetles/195.

  • Cavanaugh, N. R., and S. S. P. Shen, 2014: Northern Hemisphere climatology and trends of statistical moments documented from GHCN-Daily surface air temperature station data from 1950 to 2010. J. Climate, 27, 53965410, https://doi.org/10.1175/JCLI-D-13-00470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., and Coauthors, 2018: Was the cold European winter of 2009/10 modified by anthropogenic climate change? An attribution study. J. Climate, 31, 33873410, https://doi.org/10.1175/JCLI-D-17-0589.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conlon, K. C., N. B. Rajkovich, J. L. White-Newsome, L. Larsen, and M. S. O’Neil, 2011: Preventing cold-related morbidity and mortality in a changing climate. Maturitas, 69, 197202, https://doi.org/10.1016/j.maturitas.2011.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doll, C., C. Trinks, N. Sedlacek, V. Pelikan, T. Comes, and F. Schultmann, 2014: Adapting rail and road networks to weather extremes: Case studies for southern Germany and Austria. Nat. Hazards, 72, 6385, https://doi.org/10.1007/s11069-013-0969-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finkel, J. M., and J. I. Katz, 2018: Changing world extreme temperature statistics. Int. J. Climatol., 38, 26132617, https://doi.org/10.1002/joc.5342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2015: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Climate Change, 5, 560564, https://doi.org/10.1038/nclimate2617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., K. W. Oleson, and D. M. Lawrence, 2012: Contrasting urban and rural heat stress responses to climate change. Geophys. Res. Lett., 39, L03705, https://doi.org/10.1029/2011GL050576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett., 10, 014005, https://doi.org/10.1088/1748-9326/10/1/014005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and H. Harnik, 2017: The non-Gaussianity and spatial asymmetry of temperature extremes relative to the storm track: The role of horizontal advection. J. Climate, 30, 445464, https://doi.org/10.1175/JCLI-D-15-0806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gross, M. H., M. G. Donat, L. V. Alexander, and S. A. Sisson, 2018: The sensitivity of daily temperature variability and extremes to dataset choice. J. Climate, 31, 13371359, https://doi.org/10.1175/JCLI-D-17-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., and R. Zhang, 2017: Synoptic analysis of cold air outbreaks over the California Central Valley. J. Climate, 30, 94179433, https://doi.org/10.1175/JCLI-D-17-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, L., P. J. Hanson, W. M. Post, D. P. Kaiser, B. Yang, R. Nemani, S. G. Pallardy, and T. Meyers, 2008: The 2007 eastern US spring freeze: Increased cold damage in a warming world? BioScience, 58, 253262, https://doi.org/10.1641/B580311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guirguis, K., A. Gershunov, D. R. Cayan, and D. W. Pierce, 2018: Heat wave probability in the changing climate of the Southwest US. Climate Dyn., 50, 38533864, https://doi.org/10.1007/s00382-017-3850-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huybers, P., K. A. McKinnon, A. Rhines, and M. Tingley, 2014: U.S. daily temperatures: The meaning of extremes in the context of nonnormality. J. Climate, 27, 73687384, https://doi.org/10.1175/JCLI-D-14-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., S.-K. Min, X. Zhang, F. Zwiers, L. V. Alexander, M. G. Donat, and Y.-S. Tung, 2016: Attribution of extreme temperature changes during 1951–2010. Climate Dyn., 46, 17691782, https://doi.org/10.1007/s00382-015-2674-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B., and Coauthors, 2013: Near-term climate change: Projections and predictability. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 953–1028.

  • Kretschmer, M., D. Coumou, L. Agel, M. Barlow, E. Tziperman, and J. Cohen, 2018: More-persistent weak stratospheric polar vortex states linked to cold extremes. Bull. Amer. Meteor. Soc., 99, 4960, https://doi.org/10.1175/BAMS-D-16-0259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krueger, O., G. C. Hegerl, and S. F. B. Tett, 2015: Evaluation of mechanisms of hot and cold days in climate models over central Europe. Environ. Res. Lett., 10, 014002, https://doi.org/10.1088/1748-9326/10/1/014002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linz, M., G. Chen, and Z. Hu, 2018: Large-scale atmospheric control on non-Gaussian tails of midlatitude temperature distributions. Geophys. Res. Lett., 45, 91419149, https://doi.org/10.1029/2018GL079324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and A. J. Broccoli, 2012: Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Climate, 25, 72667281, https://doi.org/10.1175/JCLI-D-11-00709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and J. D. Neelin, 2015: Short-tailed temperature distributions over North America and implications for future changes in extremes. Geophys. Res. Lett., 42, 85778585, https://doi.org/10.1002/2015GL065602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., B. R. Lintner, J. Kim, H. Lee, J. D. Neelin, and D. E. Waliser, 2013: Classifying reanalysis surface temperature probability density functions (PDFs) over North America with cluster analysis. Geophys. Res. Lett., 40, 37103714, https://doi.org/10.1002/grl.50688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., B. R. Lintner, and A. Sweeney, 2017: Characterizing large-scale meteorological patterns and associated temperature and precipitation extremes over the northwestern United States using self-organizing maps. J. Climate, 30, 28292847, https://doi.org/10.1175/JCLI-D-16-0670.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., J. D. Neelin, J. Meyerson, and J. S. Hunter, 2018: Short warm-side temperature distribution tails drive hotspots of warm temperature extreme increases under near-future warming. J. Climate, 31, 94699487, https://doi.org/10.1175/JCLI-D-17-0878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. Zwiers, H. Shiogama, Y.-S. Tung, and M. Wehner, 2013: Multimodel detection and attribution of extreme temperature changes. J. Climate, 26, 74307451, https://doi.org/10.1175/JCLI-D-12-00551.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morak, S., G. C. Hegerl, and N. Christidis, 2013: Detectable changes in the frequency of temperature extremes. J. Climate, 26, 15611574, https://doi.org/10.1175/JCLI-D-11-00678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogawa, F., and Coauthors, 2018: Evaluating impacts of recent Arctic sea ice loss on the Northern Hemisphere winter climate change. Geophys. Res. Lett., 45, 32553263, https://doi.org/10.1002/2017GL076502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perron, M., and P. Sura, 2013: Climatology of non-Gaussian atmospheric statistics. J. Climate, 26, 10631083, https://doi.org/10.1175/JCLI-D-11-00504.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prince, K. C., and C. Evans, 2018: A climatology of extreme South American Andean cold surges. J. Appl. Meteor. Climatol., 57, 22972315, https://doi.org/10.1175/JAMC-D-18-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., D. P. Monselesan, R. J. O’Kane, C. R. Tozer, M. J. Pook, and P. T. Hayman, 2019: Synoptic and large-scale determinants of extreme austral frost events. J. Appl. Meteor. Climatol., 58, 11031124, https://doi.org/10.1175/JAMC-D-18-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rochlin, I., D. V. Ninivaggi, M. L. Hutchinson, and A. Farajollahi, 2013: Climate change and range expansion of the Asian tiger mosquito (Aedes albopictus) in northeastern USA: Implications for public health practitioners. PLOS ONE, 8, e60874, https://doi.org/10.1371/journal.pone.0060874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, C. M., and L. E. Derry, 2012: Trends in record-breaking temperatures for the conterminous United States. Geophys. Res. Lett., 39, L16703, https://doi.org/10.1029/2012GL052775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruff, T. W., and J. D. Neelin, 2012: Long tails in regional surface temperature probability distributions with implications for extremes under global warming. Geophys. Res. Lett., 39, L04704, https://doi.org/10.1029/2011GL050610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Safranyik, L., and Coauthors, 2010: Potential for range expansion of mountain pine beetle into the boreal forest of North America. Can. Entomol., 142, 415442, https://doi.org/10.4039/n08-CPA01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2015: Need for caution in interpreting extreme weather statistics. J. Climate, 28, 91669187, https://doi.org/10.1175/JCLI-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, and L. Sun, 2015: Reduced risk of North American cold extremes due to continued Arctic sea ice loss. Bull. Amer. Meteor. Soc., 96, 14891503, https://doi.org/10.1175/BAMS-D-14-00185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., and C. C. Lee, 2018: Temporal trends in absolute and relative extreme temperature events across North America. J. Geophys. Res. Atmos., 123, 11 88911 898, https://doi.org/10.1029/2018JD029150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E. T., and S. C. Sheridan, 2018: The characteristics of extreme cold events and cold air outbreaks in the eastern United States. Int. J. Climatol., 38, e807e820, https://doi.org/10.1002/joc.5408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stefanova, L., P. Sura, and M. Griffin, 2013: Quantifying the non-Gaussianity of wintertime daily maximum and minimum temperatures in the Southeast. J. Climate, 26, 838850, https://doi.org/10.1175/JCLI-D-12-00161.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamarin-Brodsky, T., K. Hodges, B. J. Hoskins, and T. G. Shepherd, 2019: A dynamical perspective on atmospheric temperature variability and its response to climate change. J. Climate, 32, 17071724, https://doi.org/10.1175/JCLI-D-18-0462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., A. S. Phillips, D. H. Portis, and W. L. Chapman, 2001: Extreme cold outbreaks in the United States and Europe, 1948–99. J. Climate, 14, 26422658, https://doi.org/10.1175/1520-0442(2001)014<2642:ECOITU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., Y. Jiang, H. Wan, J. Yan, and X. Zhang, 2017: Detection and attribution of changes in extreme temperatures at regional scales. J. Climate, 30, 70357047, https://doi.org/10.1175/JCLI-D-15-0835.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wegmann, M., Y. Orsolini, and O. Zolina, 2018: Warm Arctic–cold Siberia: Comparing the recent and the early 20th-century Arctic warmings. Environ. Res. Lett., 13, 025009, https://doi.org/10.1088/1748-9326/aaa0b7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westby, R. M., and R. X. Black, 2015: Development of anomalous temperature regimes over the southeastern United States: Synoptic behavior and role of low-frequency modes. Wea. Forecasting, 30, 553570, https://doi.org/10.1175/WAF-D-14-00093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, H., and Y. Sun, 2018: Detection of anthropogenic influence on fixed threshold indices of extreme temperature. J. Climate, 31, 63416352, https://doi.org/10.1175/JCLI-D-17-0853.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., X. Zhang, and Y. Feng, 2011: Anthropogenic influence on long return period daily temperature extremes at regional scales. J. Climate, 24, 881892, https://doi.org/10.1175/2010JCLI3908.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1321 230 16
PDF Downloads 1086 208 13