Two Types of the Western Pacific Pattern, Their Climate Impacts, and the ENSO Modulations

Ying Dai Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Ying Dai in
Current site
Google Scholar
PubMed
Close
and
Benkui Tan Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Benkui Tan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The western Pacific (WP) pattern is a major teleconnection pattern that influences the wintertime Northern Hemisphere climate variations. Based on daily NCEP–NCAR reanalysis data, this study examines the climate impacts and the El Niño–Southern Oscillation (ENSO) modulation of two types of the WP pattern. The result shows that the WP patterns may arise from precursory disturbances over Asia and the North Pacific or from the Pacific–North American (PNA) pattern of the same polarity as or opposite polarity to that of the WP patterns. Among these WP patterns, the WP patterns that arise from the PNA pattern of the same polarity are most influential on North American near-surface and polar stratospheric air temperatures; furthermore, their frequency of occurrence, amplitude, and duration can be affected by ENSO phases: the positive WP patterns occur more frequently with larger amplitude and longer duration in El Niño than in La Niña; and the negative WP patterns occur less frequently with smaller amplitude and shorter duration in El Niño than in La Niña. The above findings suggest that the PNA pattern plays a crucial role in the climate impacts and the ENSO modulation of the WP patterns.

Current affiliation: Max Planck Institute for Meteorology, Hamburg, Germany.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0618.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benkui Tan, bktan@pku.edu.cn

Abstract

The western Pacific (WP) pattern is a major teleconnection pattern that influences the wintertime Northern Hemisphere climate variations. Based on daily NCEP–NCAR reanalysis data, this study examines the climate impacts and the El Niño–Southern Oscillation (ENSO) modulation of two types of the WP pattern. The result shows that the WP patterns may arise from precursory disturbances over Asia and the North Pacific or from the Pacific–North American (PNA) pattern of the same polarity as or opposite polarity to that of the WP patterns. Among these WP patterns, the WP patterns that arise from the PNA pattern of the same polarity are most influential on North American near-surface and polar stratospheric air temperatures; furthermore, their frequency of occurrence, amplitude, and duration can be affected by ENSO phases: the positive WP patterns occur more frequently with larger amplitude and longer duration in El Niño than in La Niña; and the negative WP patterns occur less frequently with smaller amplitude and shorter duration in El Niño than in La Niña. The above findings suggest that the PNA pattern plays a crucial role in the climate impacts and the ENSO modulation of the WP patterns.

Current affiliation: Max Planck Institute for Meteorology, Hamburg, Germany.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0618.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benkui Tan, bktan@pku.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 6.82 MB)
Save
  • Athanasiadis, P. J., J. M. Wallace, and J. J. Wettstein, 2010: Patterns of wintertime jet stream variability and their relation to the storm tracks. J. Atmos. Sci., 67, 13611381, https://doi.org/10.1175/2009JAS3270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baxter, S., and S. Nigam, 2013: A subseasonal teleconnection analysis: PNA development and its relationship to the NAO. J. Climate, 26, 67336741, https://doi.org/10.1175/JCLI-D-12-00426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1987: A striking example of the atmosphere’s leading traveling pattern. J. Atmos. Sci., 44, 23102323, https://doi.org/10.1175/1520-0469(1987)044<2310:ASEOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cash, B. A., and S. Lee, 2001: Observed nonmodal growth of the Pacific–North American teleconnection pattern. J. Climate, 14, 10171028, https://doi.org/10.1175/1520-0442(2001)014<1017:ONGOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, X., and T. J. Dunkerton, 1995: Orthogonal rotation of spatial patterns derived from singular value decomposition analysis. J. Climate, 8, 26312643, https://doi.org/10.1175/1520-0442(1995)008<2631:OROSPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., and B. Tan, 2016: The western Pacific pattern precursor of major stratospheric sudden warmings and the ENSO modulation. Environ. Res. Lett., 11, 124032, https://doi.org/10.1088/1748-9326/aa538a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., S. B. Feldstein, B. Tan, and S. Lee, 2017: Formation mechanisms of the Pacific–North American teleconnection with and without its canonical tropical convection pattern. J. Climate, 30, 31393155, https://doi.org/10.1175/JCLI-D-16-0411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2000: The timescale, power spectra, and climate noise properties of teleconnection patterns. J. Climate, 13, 44304440, https://doi.org/10.1175/1520-0442(2000)013<4430:TTPSAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2002: Fundamental mechanisms of the growth and decay of the PNA teleconnection pattern. Quart. J. Roy. Meteor. Soc., 128, 775796, https://doi.org/10.1256/0035900021643683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., and S. B. Feldstein, 2005: The continuum and dynamics of Northern Hemisphere teleconnection patterns. J. Atmos. Sci., 62, 32503267, https://doi.org/10.1175/JAS3536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., S. B. Feldstein, and S. Lee, 2011: Synoptic analysis of the Pacific-North American teleconnection pattern. Quart. J. Roy. Meteor. Soc., 137, 329346, https://doi.org/10.1002/qj.768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., 1983: A unified three-dimensional instability theory on the onset of blocking and cyclogenesis. II: Teleconnection patterns. J. Atmos. Sci., 40, 25932609, https://doi.org/10.1175/1520-0469(1983)040<2593:AUTDIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. T. Pierrehumbert, and R. L. Panetta, 1986: Dissipative destabilization of external Rossby waves. J. Atmos. Sci., 43, 388396, https://doi.org/10.1175/1520-0469(1986)043<0388:DDOERW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST. v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurwitz, M. M., P. A. Newman, and C. I. Garfinkel, 2012: On the influence of North Pacific sea surface temperature on the Arctic winter climate. J. Geophys. Res., 117, D19110, https://doi.org/10.1029/2012JB009463.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S. B. Feldstein, 2010: The continuum of North Pacific sea level pressure patterns: Intraseasonal, interannual, and interdecadal variability. J. Climate, 23, 851867, https://doi.org/10.1175/2009JCLI3099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., R. A. Plumb, and M. Ting, 1989: Examples of the horizontal propagation of quasi-stationary waves. J. Atmos. Sci., 46, 28022811, https://doi.org/10.1175/1520-0469(1989)046<2802:EOTHPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodera, K., 1998: Consideration of the origin of the different midlatitude atmospheric responses among El Niño events. J. Meteor. Soc. Japan, 76, 347361, https://doi.org/10.2151/jmsj1965.76.3_347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., J. S. Chowdary, S. P. Xie, Y. M. Min, and J. Y. Lee, 2012: Limitations of seasonal predictability for summer climate over East Asia and the northwestern Pacific. J. Climate, 25, 75747589, https://doi.org/10.1175/JCLI-D-12-00009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1987: Retrograding wintertime low-frequency disturbances over the North Pacific Ocean. J. Atmos. Sci., 44, 27272742, https://doi.org/10.1175/1520-0469(1987)044<2727:RWLFDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743, https://doi.org/10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. J. Nath, 1999: Observed and GCM-simulated westward-propagating, planetary-scale fluctuations with approximately three-week periods. Mon. Wea. Rev., 127, 23242345, https://doi.org/10.1175/1520-0493(1999)127<2324:OAGSWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., D. L. Hartmann, D. W. J. Thompson, K. Jeev, and Y. L. Yung, 2005: Stratosphere-troposphere evolution during polar vortex intensification. J. Geophys. Res., 110, D24101, https://doi.org/10.1029/2005JD006302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linkin, M., and S. Nigam, 2008: The North Pacific Oscillation–west Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 19791997, https://doi.org/10.1175/2007JCLI2048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part II: Parametric and structural uncertainty estimations. J. Climate, 28, 931951, https://doi.org/10.1175/JCLI-D-14-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. Y., L. Wang, W. Zhou, and W. Chen, 2014: Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies. Climate Dyn., 42, 28172839, https://doi.org/10.1007/s00382-014-2163-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., and M. Watanabe, 2008: The growth and triggering mechanisms of the PNA: A MJO-PNA coherence. J. Meteor. Soc. Japan, 86, 213236, https://doi.org/10.2151/jmsj.86.213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., M. Tanaka, and J. M. Wallace, 1987: Horizontal structure and energetics of Northern Hemisphere wintertime teleconnection patterns. J. Atmos. Sci., 44, 33773391, https://doi.org/10.1175/1520-0469(1987)044<3377:HSAEON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., 2003: Teleconnections. Encyclopedia of Atmospheric Sciences, J. A. Curry and J. A. Pyle, Eds., Academic Press, 2243–2269.

    • Crossref
    • Export Citation
  • Nishii, K., H. Nakamura, and Y. J. Orsolini, 2010: Cooling of the wintertime Arctic stratosphere induced by the western Pacific teleconnection pattern. Geophys. Res. Lett., 37, L13805, https://doi.org/10.1029/2010GL043551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishii, K., H. Nakamura, and Y. J. Orsolini, 2011: Geographical dependence observed in blocking high influence on the stratospheric variability through enhancement and suppression of upward planetary-wave propagation. J. Climate, 24, 64086423, https://doi.org/10.1175/JCLI-D-10-05021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., A. Y. Karpechko, and G. Nikulin, 2009: Variability of the Northern Hemisphere polar stratospheric cloud potential: The role of North Pacific disturbances. Quart. J. Roy. Meteor. Soc., 135, 10201029, https://doi.org/10.1002/qj.409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pak, G., Y.-H. Park, F. Vivier, Y.-O. Kwon, and K.-I. Chang, 2014: Regime-dependent nonstationary relationship between the East Asian winter monsoon and North Pacific Oscillation. J. Climate, 27, 81858204, https://doi.org/10.1175/JCLI-D-13-00500.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2010: Role of Rossby wave breaking in the west Pacific teleconnection. Geophys. Res. Lett., 37, L11802, https://doi.org/10.1029/2010GL043309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1981: The North Pacific Oscillation. J. Climatol., 1, 3952, https://doi.org/10.1002/joc.3370010106.

  • Rogers, J. C., 1990: Patterns of low-frequency monthly sea level pressure variability (1899–1986) and associated wave cyclone frequencies. J. Climate, 3, 13641379, https://doi.org/10.1175/1520-0442(1990)003<1364:POLFMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., J. M. Wallace, and G. Branstator, 1983: Barotropic wave propagation and instability and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 13631392, https://doi.org/10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2005a: Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci., 62, 44234440, https://doi.org/10.1175/JAS3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2005b: Geographical dependence of upper-level blocking formation associated with intraseasonal amplification of the Siberian high. J. Atmos. Sci., 62, 44414449, https://doi.org/10.1175/JAS3628.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2013: Interannual variability of the East Asian winter monsoon and associated modulations of the planetary waves. J. Climate, 26, 94459461, https://doi.org/10.1175/JCLI-D-12-00842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, S., K. Nishii, and H. Nakamura, 2016: Vertical structure and energetics of the western Pacific teleconnection pattern. J. Climate, 29, 65976616, https://doi.org/10.1175/JCLI-D-15-0549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2014: An intensity index for the East Asian winter monsoon. J. Climate, 27, 23612374, https://doi.org/10.1175/JCLI-D-13-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wettstein, J. J., and J. M. Wallace, 2010: Observed patterns of month-to-month storm-track variability and their relationship to the background flow. J. Atmos. Sci., 67, 14201437, https://doi.org/10.1175/2009JAS3194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Charlton-Perez, S. Ineson, A. G. Marshall, and G. Masato, 2010: Associations between stratospheric variability and tropospheric blocking. J. Geophys. Res., 115, D06108, https://doi.org/10.1029/2009JD012742.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24, 708720, https://doi.org/10.1175/2010JCLI3688.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, J., B. Tan, S. B. Feldstein, and S. Lee, 2015: Wintertime North Pacific teleconnection patterns: Seasonal and interannual variability. J. Climate, 28, 82478263, https://doi.org/10.1175/JCLI-D-14-00749.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1465 422 60
PDF Downloads 1452 305 28