Arctic Summer Airmass Transformation, Surface Inversions, and the Surface Energy Budget

Michael Tjernström Department of Meteorology, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
National Centre for Atmospheric Research, Mesoscale and Microscale Laboratory, Boulder, Colorado

Search for other papers by Michael Tjernström in
Current site
Google Scholar
PubMed
Close
,
Matthew D. Shupe NOAA/Earth System Research Laboratory, Boulder, Colorado
Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Matthew D. Shupe in
Current site
Google Scholar
PubMed
Close
,
Ian M. Brooks School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Ian M. Brooks in
Current site
Google Scholar
PubMed
Close
,
Peggy Achtert School of Earth and Environment, University of Leeds, Leeds, United Kingdom
Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Peggy Achtert in
Current site
Google Scholar
PubMed
Close
,
John Prytherch Department of Meteorology, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Search for other papers by John Prytherch in
Current site
Google Scholar
PubMed
Close
, and
Joseph Sedlar Department of Meteorology, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Joseph Sedlar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

During the Arctic Clouds in Summer Experiment (ACSE) in summer 2014 a weeklong period of warm-air advection over melting sea ice, with the formation of a strong surface temperature inversion and dense fog, was observed. Based on an analysis of the surface energy budget, we formulated the hypothesis that, because of the airmass transformation, additional surface heating occurs during warm-air intrusions in a zone near the ice edge. To test this hypothesis, we explore all cases with surface inversions occurring during ACSE and then characterize the inversions in detail. We find that they always occur with advection from the south and are associated with subsidence. Analyzing only inversion cases over sea ice, we find two categories: one with increasing moisture in the inversion and one with constant or decreasing moisture with height. During surface inversions with increasing moisture with height, an extra 10–25 W m−2 of surface heating was observed, compared to cases without surface inversions; the surface turbulent heat flux was the largest single term. Cases with less moisture in the inversion were often cloud free and the extra solar radiation plus the turbulent surface heat flux caused by the inversion was roughly balanced by the loss of net longwave radiation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael Tjernström, michaelt@misu.su.se

Abstract

During the Arctic Clouds in Summer Experiment (ACSE) in summer 2014 a weeklong period of warm-air advection over melting sea ice, with the formation of a strong surface temperature inversion and dense fog, was observed. Based on an analysis of the surface energy budget, we formulated the hypothesis that, because of the airmass transformation, additional surface heating occurs during warm-air intrusions in a zone near the ice edge. To test this hypothesis, we explore all cases with surface inversions occurring during ACSE and then characterize the inversions in detail. We find that they always occur with advection from the south and are associated with subsidence. Analyzing only inversion cases over sea ice, we find two categories: one with increasing moisture in the inversion and one with constant or decreasing moisture with height. During surface inversions with increasing moisture with height, an extra 10–25 W m−2 of surface heating was observed, compared to cases without surface inversions; the surface turbulent heat flux was the largest single term. Cases with less moisture in the inversion were often cloud free and the extra solar radiation plus the turbulent surface heat flux caused by the inversion was roughly balanced by the loss of net longwave radiation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael Tjernström, michaelt@misu.su.se
Save
  • Achtert, P., I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, 2015: Measurement of wind profiles over the Arctic Ocean from ship-borne Doppler lidar. Atmos. Meas. Tech., 8, 49935007, https://doi.org/10.5194/amt-8-4993-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., C. S. Bretherton, D. Johnson, W. H. Schubert, and A. S. Frish, 1995: The Atlantic Stratocumulus Transition Experiment—ASTEX. Bull. Amer. Meteor. Soc., 76, 889904, https://doi.org/10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., E. C. van der Linden, and W. Hazeleger, 2012: Boundary layer stability and Arctic climate change: A feedback study using EC-Earth. Climate Dyn., 39, 26592673, https://doi.org/10.1007/s00382-011-1272-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blunden, J., and D. S. Arndt, 2017: The Arctic [in “State of the Climate in 2016”]. Bull. Amer. Meteor. Soc., 98 (8), S93S128.

  • Brooks, I. M., and Coauthors, 2017: The turbulent structure of the Arctic summer boundary layer during the Arctic Summer Cloud-Ocean Study. J. Geophys. Res. Atmos., 122, 96859704, https://doi.org/10.1002/2017JD027234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., and K.-K. Tung, 2012: Robustness of dynamical feedbacks from radiative forcing: 2% solar versus 2 × 3 CO2 experiments in an idealized GCM. J. Atmos. Sci., 69, 22562271, https://doi.org/10.1175/JAS-D-11-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Y., S. Liang, X. Chen, T. He, D. Wang, and X. Cheng, 2017: Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial sea-ice melting. Sci. Rep., 7, 8462, https://doi.org/10.1038/s41598-017-08545-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, C. J., T. Uttal, C. Long, M. D. Shupe, R. S. Stone, and S. Starkweather, 2016: The role of springtime, Arctic clouds in determining autumn sea ice extent. J. Climate, 29, 65816596, https://doi.org/10.1175/JCLI-D-16-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., A. A. Hinton, K. E. Prada, J. E. Hare, and C. W. Fairall, 1998: Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Oceanic Technol., 15, 547562, https://doi.org/10.1175/1520-0426(1998)015<0547:DCFEFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., S. C. Hardiman, P. J. Kushner, and J. Cohen, 2009: The dynamical response to snow cover perturbations in a large ensemble of atmospheric GCM integrations. J. Climate, 22, 12081222, https://doi.org/10.1175/2008JCLI2505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., D. A. Stone, P. A. Stott, T. Nozawa, A. Yu. Karpechko, G. C. Hegerl, M. F. Wehner, and P. D. Jones, 2008: Attribution of polar warming to human influence. Nat. Geosci., 1, 750754, https://doi.org/10.1038/ngeo338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, R. M., and Coauthors, 2017: A comparison of the two arctic atmospheric winter states observed during N-ICE2015 and SHEBA. J. Geophys. Res. Atmos., 122, 57165737, https://doi.org/10.1002/2016JD025475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., T. Mauritsen, M. Tjernström, E. Källén and G. Svensson, 2008: Vertical structure of recent Arctic warming. Nature, 541, 5356, https://doi.org/10.1038/nature06502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., T. Mauritsen, S. Drijfhout, M. Tjernström, and S. Mårtensson, 2011: Warm winds from the Pacific caused extensive Arctic sea-ice melt in summer 2007. Climate Dyn., 36, 21032112, https://doi.org/10.1007/s00382-010-0809-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartung, K., G. Svensson, H. Struthers, A.-L. Deppenmeier, and W. Hazeleger, 2018: An EC-Earth coupled atmosphere-ocean single-column model (AOSCM.v1_EC-Earth3) for studying coupled marine and polar processes. Geosci. Model Dev., 11, 41174137, https://doi.org/10.5194/gmd-11-4117-2018.

    • Search Google Scholar
    • Export Citation
  • Holtslag, B., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles—Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, https://doi.org/10.1175/BAMS-D-11-00187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., C. W. Fairall, M. D. Shupe, P. O. G. Persson, E. L. Andreas, P. Guest, and R. M. Moritz, 2002: An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res., 107, 8039, https://doi.org/10.1029/2000JC000439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1–29.

  • Kapsch, M.-L., R. G. Graversen, and M. Tjernström, 2013: Springtime atmospheric transport controls Arctic summer sea ice. Nat. Climate Change, 3, 744748, https://doi.org/10.1038/nclimate1884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapsch, M.-L., R. G. Graversen, T. Economou, and M. Tjernström, 2014: The importance of spring atmospheric conditions for the prediction of Arctic summer sea-ice extent. Geophys. Res. Lett., 41, 52885296, https://doi.org/10.1002/2014GL060826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapsch, M.-L., R. G. Graversen, M. Tjernström, and R. Bintanja, 2016: The effect of downwelling longwave radiation on Arctic summer sea ice. J. Climate, 29, 11431159, https://doi.org/10.1175/JCLI-D-15-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and A. Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., 114, D18204, https://doi.org/10.1029/2009JD011773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenigk, T., and Coauthors, 2013: Arctic climate change in the 21st century in an ensemble of AR5 scenario projections with EC-Earth. Climate Dyn., 40, 27192743, https://doi.org/10.1007/s00382-012-1505-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leck, C., E. D. Nilsson, E. K. Bigg, and L. Bäcklin, 2001: Atmospheric program on the Arctic Ocean Expedition 1996 (AOE-1996): An overview of scientific goals, experimental approach, and instruments. J. Geophys. Res., 106, 32 05132 067, https://doi.org/10.1029/2000JD900461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and J. R. Key, 2014: Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum. Environ. Res. Lett., 9, https://doi.org/10.1088/1748-9326/9/4/044002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and Coauthors, 2011: An Arctic CCN-limited cloud-aerosol regime. Atmos. Chem. Phys., 11, 165173, https://doi.org/10.5194/acp-11-165-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. W. Zwiers, and T. Agnew, 2008: Human influence on Arctic sea ice detectable from early 1990s onwards. Geophys. Res. Lett., 35, L21701, https://doi.org/10.1029/2008GL035725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moat, B. I., M. J. Yelland, and I. M. Brooks, 2015: Airflow distortion at instrument sites on the ODEN during the ACSE project. National Oceanography Centre, Southampton, United Kingdom, Internal Document 17, https://eprints.soton.ac.uk/385311/.

  • Moran, K. P., S. Pezoa, C. W. Fairall, C. R. Williams, T. E. Ayers, A. Brewer, S. P. de Szoeke, and V. Ghate, 2012: A motion-stabilized W-band radar for shipboard observations of marine boundary-layer clouds. Bound.-Layer Meteor., 143, 324, https://doi.org/10.1007/s10546-011-9674-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. de Boer, G. Feingold, J. Harrington, M. D. Shupe, and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117, https://doi.org/10.1038/ngeo1332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mortin, J., G. Svensson, R.-G. Graversen, M.-L. Kapsch, J. C. Stroeve, and L. N. Boisvert, 2016: Melt onset over Arctic sea ice controlled by atmospheric moisture transport. Geophys. Res. Lett., 43, 66366642, https://doi.org/10.1002/2016GL069330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naakka, T., T. Nygård, T. Vihma, J. Sedlar, and R. Graversen, 2018: Atmospheric moisture transport between mid-latitudes and the Arctic: Regional, seasonal and vertical distributions. Int. J. Climatol., in press.

    • Crossref
    • Export Citation
  • Perovich, D. K., T. C. Grenfell, B. Light, and P. V. Hobbs, 2002: Seasonal evolution of the albedo of multiyear Actic sea ice. J. Geophys. Res., 107, 8044, https://doi.org/10.1029/2000JC000438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., B. Light, H. Eicken, K.-F. Jones, K. Runciman, and S. V. Nghiem, 2007: Increasing solar heating of the Arctic Ocean and adjacent seas, 1979-2005: Attribution and role in the ice-albedo feedback. Geophys. Res. Lett., 34, L19505, https://doi.org/10.1029/2007GL031480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., 2012: Onset and end of the summer melt season over sea ice: Thermal structure and surface energy perspective from SHEBA. Climate Dyn., 39, 13491371, https://doi.org/10.1007/s00382-011-1196-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., M. D. Shupe, D. Perovich, and A. Solomon, 2017: Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: Observations of midwinter SHEBA conditions. Climate Dyn., 49, 13411364, https://doi.org/10.1007/s00382-016-3383-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, https://doi.org/10.1038/ngeo2071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., B. Medeiros, and T. Mauritsen, 2014: Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions. Climate Dyn., 43, 289303, https://doi.org/10.1007/s00382-013-1964-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., and Coauthors, 2018: Role of air-mass transformations in exchange between the Arctic and mid-latitudes. Nat. Geosci., 11, 805812, https://doi.org/10.1038/s41561-018-0234-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., and Coauthors, 2010: Arctic ocean warming contributes to reduced polar ice cap. J. Phys. Oceanogr., 40, 27432756, https://doi.org/10.1175/2010JPO4339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prytherch, J., M. J. Yelland, I. M. Brooks, D. J. Tupman, R. W. Pascal, B. I. Moat, and S. J. Norris, 2015: Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements from ships. Atmos. Chem. Phys., 15, 10 61910 629, https://doi.org/10.5194/acp-15-10619-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schröder, D., D. L. Feltham, D. Flocco, and M. Tsamados, 2014: September Arctic sea-ice minimum predicted by spring melt-pond fraction. Nat. Climate Change, 4, 353357, https://doi.org/10.1038/nclimate2203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sedlar, J., 2014: Implications of limited liquid water path on static mixing within Arctic low-level clouds. J. Appl. Meteor. Climatol., 53, 27752789, https://doi.org/10.1175/JAMC-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sedlar, J., and A. Devasthale, 2012: Clear-sky thermodynamic and radiative anomalies over a sea ice sensitive region of the Arctic. J. Geophys. Res., 117, D19111, https://doi.org/10.1029/2012JD017754.

    • Search Google Scholar
    • Export Citation
  • Sedlar, J., and M. Tjernström, 2017: Clouds, warm air and a climate cooling signal over the summer Arctic. Geophys. Res. Lett., 44, 10951103, https://doi.org/10.1002/2016GL071959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sedlar, J., and Coauthors, 2011: A transitioning Arctic surface energy budget: The impacts of solar zenith angle, surface albedo and cloud radiative forcing. Climate Dyn., 37, 16431660, https://doi.org/10.1007/s00382-010-0937-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sedlar, J., M. D. Shupe, and M. Tjernström, 2012: On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic. J. Climate, 25, 23742393, https://doi.org/10.1175/JCLI-D-11-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and J. A. Francis, 2006: The Arctic amplification debate. Climatic Change, 76, 241264, https://doi.org/10.1007/s10584-005-9017-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, https://doi.org/10.1016/j.gloplacha.2011.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimada, K., T. Kamoshida, M. Itoh, S. Nishino, E. Carmack, F. McLaughlin, S. Zimmermann, and A. Proshutinsky, 2006: Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett., 33, L08605, https://doi.org/10.1029/2005GL025624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17, 616628, https://doi.org/10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., S. Y. Matrosov, and T. Uttal, 2006: Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J. Atmos. Sci., 63, 697711, https://doi.org/10.1175/JAS3659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., V. P. Walden, E. Eloranta, T. Uttal, J. R. Campbell, S. M. Starkweather, and M. Shiobara, 2011: Clouds at Arctic atmospheric observatories. Part I: Occurrence and macrophysical properties. J. Appl. Meteor. Climatol., 50, 626644, https://doi.org/10.1175/2010JAMC2467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., P. O. G. Persson, I. M. Brooks, M. Tjernstrom, J. Sedlar, T. Mauritsen, S. Sjogren, and C. Leck, 2013: Cloud and boundary layer interactions over the Arctic sea ice in late summer. Atmos. Chem. Phys., 13, 93799400, https://doi.org/10.5194/acp-13-9379-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sotiropoulou, G., 2016: The Arctic atmosphere: Interactions between clouds, boundary-layer turbulence and large-scale circulation. Ph.D. dissertation, Department of Meteorology, Stockholm University, 49 pp., https://www.diva-portal.org/smash/get/diva2:1033927/FULLTEXT02.pdf.

  • Sotiropoulou, G., J. Sedlar, M. Tjernström, M. D. Shupe, I. M. Brooks, and P. O. G. Persson, 2014: The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface. Atmos. Chem. Phys., 14, 12 57312 592, https://doi.org/10.5194/acp-14-12573-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sotiropoulou, G., and Coauthors, 2016: Atmospheric conditions during the Arctic Clouds in Summer Experiment (ACSE): Contrasting open-water and sea-ice surfaces during melt and freeze-up seasons. J. Climate, 29, 87218744, https://doi.org/10.1175/JCLI-D-16-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sotiropoulou, G., M. Tjernström, J. Savre, A. M. L. Ekman, K. Hartung, and J. Sedlar, 2018: Large-eddy simulation of a warm-air advection episode in the summer Arctic. Quart. J. Roy. Meteor. Soc., 144, 24492462, https://doi.org/10.1002/qj.3316.

    • Crossref
    • Export Citation
  • Spreen, G., L. Kaleschke, and G. Heygster, 2008: Sea ice remote sensing using AMSR-E 89 GHz channels. J. Geophys. Res., 113, C02S03, https://doi.org/10.1029/2005JC003384.

    • Search Google Scholar
    • Export Citation
  • Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 20592077, https://doi.org/10.1175/BAMS-D-14-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., 2005: The summer Arctic boundary layer during the Arctic Ocean Experiment 2001 (AOE-2001). Bound.-Layer Meteor., 117, 536, https://doi.org/10.1007/s10546-004-5641-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., C. Leck, P. O. G. Persson, M. L. Jensen, S. P. Oncley, and A. Targino, 2004: Experimental equipment: A supplement to the summertime Arctic atmosphere: Meteorological measurements during the Arctic Ocean Experiment 2001. Bull. Amer. Meteor. Soc., 85, ES14ES18, https://doi.org/10.1175/BAMS-85-9-Tjernstrom.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and Coauthors, 2012: Meteorological conditions in the Central Arctic summer during the arctic summer cloud ocean study (ASCOS). Atmos. Chem. Phys., 12, 68636889, https://doi.org/10.5194/acp-12-6863-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and Coauthors, 2014: The Arctic Summer Cloud Ocean Study (ASCOS): Overview and experimental design. Atmos. Chem. Phys., 14, 28232869, https://doi.org/10.5194/acp-14-2823-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and Coauthors, 2015: Warm-air advection, air mass transformation and fog causes rapid ice melt. Geophys. Res. Lett., 42, 55945602, https://doi.org/10.1002/2015GL064373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. E. Cady-Pereira, and K. L. Gaustad, 2007: Retrieving liquid water path and precipitable water vapor from the Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45, 36803690, https://doi.org/10.1109/TGRS.2007.903703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uttal, T., and Coauthors, 2002: Surface Heat Budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83, 255276, https://doi.org/10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vihma, T., and Coauthors, 2014: Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: A review. Atmos. Chem. Phys., 14, 94039450, https://doi.org/10.5194/acp-14-9403-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westwater, E. R., Y. Han, M. D. Shupe, and S. Y. Matrosov, 2001: Analysis of integrated cloud liquid and precipitable water vapor retrivals from microwave radiometers during SHEBA. J. Geophys. Res., 106, 32 01932 030, https://doi.org/10.1029/2000JD000055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., R. Caballero, and G. Svensson, 2013: Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett., 40, 47174721, https://doi.org/10.1002/grl.50912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., R. Caballero, and G. Svensson, 2017: Representation of arctic moist intrusions in CMIP5 models and implications for winter climate biases. J. Climate, 30, 40834102, https://doi.org/10.1175/JCLI-D-16-0710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1215 297 24
PDF Downloads 1137 192 8