• Banwell, A. F., D. R. MacAyeal, and O. V. Sergienko, 2013: Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes. Geophys. Res. Lett., 40, 58725876, https://doi.org/10.1002/2013GL057694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, R. E., and Coauthors, 2014: Deformation, warming and softening of Greenland’s ice by refreezing meltwater. Nat. Geosci., 7, 497502, https://doi.org/10.1038/ngeo2179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, R. E., and Coauthors, 2017: Antarctic ice shelf potentially stabilized by export of meltwater in surface river. Nature, 544, 344348, https://doi.org/10.1038/nature22048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and Coauthors, 2013: July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496, 8386, https://doi.org/10.1038/nature12002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and G. J. Marshall, 2012: The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses. J. Climate, 25, 71387146, https://doi.org/10.1175/JCLI-D-11-00685.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. P. Nicolas, and A. J. Monaghan, 2011: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J. Climate, 24, 41894209, https://doi.org/10.1175/2011JCLI4074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. P. Nicolas, A. J. Monaghan, M. A. Lazzara, L. M. Keller, G. A. Weidner, and A. B. Wilson, 2013: Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci., 6, 139145, https://doi.org/10.1038/ngeo1671; Corrigendum, 7, 76, https://doi.org/10.1038/ngeo2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, https://doi.org/10.1038/nclimate2100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deb, P., A. Orr, D. H. Bromwich, J. P. Nicolas, J. Turner, and J. S. Hosking, 2018: Summer drivers of atmospheric variability affecting ice shelf thinning in the Amundsen Sea Embayment, West Antarctica. Geophys. Res. Lett., 45, 41244133, https://doi.org/10.1029/2018GL077092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeConto, R. M., and D. Pollard, 2016: Contribution of Antarctica to past and future sea-level rise. Nature, 531, 591597, https://doi.org/10.1038/nature17145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and J. M. Wallace, 2012: Influence of the tropics on the southern annular mode. J. Climate, 25, 63306348, https://doi.org/10.1175/JCLI-D-11-00523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doddridge E. W., and J. Marshall, 2017: Modulation of the seasonal cycle of Antarctic sea ice extent related to the southern annular mode. Geophys. Res. Lett., 44, 97619768, https://doi.org/10.1002/2017GL074319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elvidge, A. D., I. A. Renfrew, J. C. King, A. Orr, and T. A. Lachlan-Cope, 2016: Foehn warming distributions in nonlinear and linear flow regimes: A focus on the Antarctic Peninsula. Quart. J. Roy. Meteor. Soc., 142, 618631, https://doi.org/10.1002/qj.2489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., D. H. Bromwich, and K. M. Hines, 2011: Understanding the SAM influence on the South Pacific ENSO teleconnection. Climate Dyn., 36, 15551576, https://doi.org/10.1007/s00382-010-0905-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardner, A. S., G. Moholdt, T. Scambos, M. Fahnstock, S. Ligtenberg, M. van den Broeke, and J. Nilsson, 2018: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere, 12, 521547, https://doi.org/10.5194/tc-12-521-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graeter, K. A., and Coauthors, 2018: Ice core records of West Greenland melt and climate forcing. Geophys. Res. Lett., 45, 31643172, https://doi.org/10.1002/2017GL076641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., J. M. Jones, J. Cappelen, S. H. Mernild, L. Wood, K. Steffen, and P. Huybrechts, 2013: The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and ice melt/runoff. Int. J. Climatol., 33, 862880, https://doi.org/10.1002/joc.3475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartigan, J. A., and M. A. Wong, 1979: Algorithm AS 136: A k-means clustering algorithm. Appl. Stat., 28, 100108.

  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 535 pp.

  • Hubbard, B., and Coauthors, 2016: Massive subsurface ice formed by refreezing of ice-shelf melt ponds. Nat. Commun., 7, 11 897, https://doi.org/10.1038/ncomms11897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irving, D., and I. Simmonds, 2016: A new method for identifying the Pacific–South American pattern and its influence on regional climate variability. J. Climate, 29, 61096125, https://doi.org/10.1175/JCLI-D-15-0843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S. B. Feldstein, 2010: The continuum of North Pacific sea level pressure patterns: Intraseasonal, interannual, and interdecadal variability. J. Climate, 23, 851867, https://doi.org/10.1175/2009JCLI3099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, R. W., I. A. Renfrew, A. Orr, B. G. M. Webber, D. M. Holland, and M. A. Lazzara, 2016: Evaluation of four global reanalysis products using in situ observations in the Amundsen Sea Embayment, Antarctica. J. Geophys. Res. Atmos., 121, 62406257, https://doi.org/10.1002/2015JD024680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joughin, I., B. E. Smith, and B. Medley, 2014: Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science, 344, 735738, https://doi.org/10.1126/science.1249055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Climate, 2, 12391252, https://doi.org/10.1175/1520-0442(1989)002<1239:SHCFAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Key, J. R., and A. J. Schweiger, 1998: Tools for atmospheric radiative transfer: Streamer and FluxNet. Comput. Geosci., 24, 443451, https://doi.org/10.1016/S0098-3004(97)00130-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Key, J. R., X. Wang, Y. Liu, R. Dworak, and A. Letterly, 2016: The AVHRR Polar Pathfinder climate data records. Remote Sens., 8, 167, https://doi.org/10.3390/rs8030167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, J. C., and Coauthors, 2017: The impact of föhn winds on surface energy balance during the 2010–2011 melt season over Larsen C Ice Shelf, Antarctica. J. Geophys. Res. Atmos., 122, 12 06212 076, https://doi.org/10.1002/2017JD026809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingslake, J., J. C. Ely, I. Das, and R. E. Bell, 2017: Widespread movement of meltwater onto and across Antarctic ice shelves. Nature, 544, 349352, https://doi.org/10.1038/nature22049; Corrigendum, 551, 658, https://doi.org/10.1038/nature24478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kopp, R. E., and Coauthors, 2017: Evolving understanding of Antarctic ice-sheet physics and ambiguity in probabilistic sea-level projections. Earth’s Future, 5, 12171233, https://doi.org/10.1002/2017EF000663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luckman, A., A. Elvidge, D. Jansen, B. Kulessa, P. K. Munneke, J. King, and N. E. Barrand, 2014: Surface melt and ponding on Larsen C Ice Shelf and the impact of föhn winds. Antarct. Sci., 26, 625635, https://doi.org/10.1017/S0954102014000339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massom, R. A., T. A. Scambos, L. G. Bennetts, P. Reid, V. A. Squire, and S. E. Stammerjohn, 2018: Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature, 558, 383389, https://doi.org/10.1038/s41586-018-0212-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, C. M. Bitz, C. T. Y. Chung, and H. Teng, 2016a: Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosci., 9, 590595, https://doi.org/10.1038/ngeo2751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, and H. Teng, 2016b: Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation. Nat. Commun., 7, 11 718, https://doi.org/10.1038/ncomms11718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and J. N. Paegle, 2001: The Pacific–South American modes and their downstream effects. Int. J. Climatol., 21, 12111229, https://doi.org/10.1002/joc.685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mouginot, J., E. Rignot, and B. Scheuchl, 2014: Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett., 41, 15761584, https://doi.org/10.1002/2013GL059069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicolas, J. P., and D. H. Bromwich, 2011: Climate of West Antarctica and influence of marine air intrusions. J. Climate, 24, 4967, https://doi.org/10.1175/2010JCLI3522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicolas, J. P., and Coauthors, 2017: January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. Nat. Commun., 8, 15 799, https://doi.org/10.1038/ncomms15799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., D. P. Monselesan, and J. S. Risbey, 2017: A multiscale reexamination of the Pacific–South American pattern. Mon. Wea. Rev., 145, 379402, https://doi.org/10.1175/MWR-D-16-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paolo, F. S., H. A. Fricker, and L. Padman, 2015: Volume loss from Antarctic ice shelves is accelerating. Science, 348, 327331, https://doi.org/10.1126/science.aaa0940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paolo, F. S., L. Padman, H. A. Fricker, S. Adusumilli, S. Howard, and M. R. Siegfried, 2018: Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern Oscillation. Nat. Geosci., 11, 121126, https://doi.org/10.1038/s41561-017-0033-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pritchard, H. D., S. R. M. Ligtenberg, H. A. Fricker, D. G. Vaughan, M. R. van den Broeke, and L. Padman, 2012: Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 502505, https://doi.org/10.1038/nature10968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., G. Casassa, P. Gogineni, W. Krabill, A. Rivera, and R. Thomas, 2004: Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B Ice Shelf. Geophys. Res. Lett., 31, L18401, https://doi.org/10.1029/2004GL020697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., J. Mouginot, M. Morlighem, H. Seroussi, and B. Scheuchl, 2014: Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler Glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett., 41, 35023509, https://doi.org/10.1002/2014GL060140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scambos, T. A., C. Hulbe, M. Fahnestock, and J. Bohlander, 2000: The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol., 46, 516530, https://doi.org/10.3189/172756500781833043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scambos, T. A., and Coauthors, 2017: How much, how fast?: A science review and outlook for research on the instability of Antarctica’s Thwaites Glacier in the 21st century. Global Planet. Change, 153, 1634, https://doi.org/10.1016/j.gloplacha.2017.04.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., Y. Okumura, and C. Deser, 2012: Observed Antarctic interannual climate variability and tropical linkages. J. Climate, 25, 40484066, https://doi.org/10.1175/JCLI-D-11-00273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. C., and D. Lubin, 2014: Mixed-phase cloud radiative properties over Ross Island, Antarctica: The influence of various synoptic-scale atmospheric circulation regimes. J. Geophys. Res. Atmos., 119, 67026723, https://doi.org/10.1002/2013JD021132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. C., D. Lubin, A. M. Vogelmann, and S. Kato, 2017: West Antarctic ice sheet cloud cover and surface radiation budget from NASA A-train satellites. J. Climate, 30, 61516170, https://doi.org/10.1175/JCLI-D-16-0644.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shean, D. E., and Coauthors, 2017: GPS-derived estimates of surface mass balance and ocean-induced basal melt for Pine Island Glacier Ice Shelf, Antarctica. Cryosphere, 11, 26552674, https://doi.org/10.5194/tc-11-2655-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and Coauthors, 2012: A reconciled estimate of ice-sheet mass balance. Science, 338, 11831189, https://doi.org/10.1126/science.1228102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and Coauthors, 2018: Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 556, 219222, https://doi.org/10.1038/s41586-018-0179-y.

    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., C. M. Bitz, and K. C. Armour, 2017: Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season. Geophys. Res. Lett., 44, 90089019, https://doi.org/10.1002/2017GL074691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., B. M. Hegyi, R. C. Boeke, and L. N. Boisvert, 2018: On the increasing importance of air-sea exchanges in a thawing Arctic: A review. Atmosphere, 9, 41, https://doi.org/10.3390/atmos9020041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tedesco, M., 2009: Assessment and development of snowmelt retrieval algorithms over Antarctica from K-band spaceborne brightness temperature (1979–2008). Remote Sens. Environ., 113, 979997, https://doi.org/10.1016/j.rse.2009.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tedesco, M., W. Abdalati, and H. J. Zwally, 2007: Persistent surface snowmelt over Antarctica (1987–2006) from 19.35 GHz brightness temperatures. Geophys. Res. Lett., 34, L18504, https://doi.org/10.1029/2007GL031199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, https://doi.org/10.1126/science.1069270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and Coauthors, 2015: Warm-air advection, air mass transformation and fog causes rapid ice melt. Geophys. Res. Lett., 42, 55945602, https://doi.org/10.1002/2015GL064373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trusel, L. D., K. E. Frey, S. B. Das, K. B. Karnauskas, P. K. Munneke, E. Van Meijgaard, and M. R. Van Den Broeke, 2015: Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nat. Geosci., 8, 927932, https://doi.org/10.1038/ngeo2563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trusel, L. D., and Coauthors, 2018: Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature, 564, 104108, https://doi.org/10.1038/s41586-018-0752-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., T. Phillips, J. S. Hosking, G. J. Marshall, and A. Orr, 2013: The Amundsen Sea low. Int. J. Climatol., 33, 18181829, https://doi.org/10.1002/joc.3558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors, 2016: Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535, 411415, https://doi.org/10.1038/nature18645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., A. Orr, G. H. Gudmundsson, A. Jenkins, R. G. Bingham, C.-D. Hillenbrand, and T. J. Bracegirdle, 2017a: Atmosphere-ocean-ice interactions in the Amundsen Sea Embayment, West Antarctica. Rev. Geophys., 55, 235276, https://doi.org/10.1002/2016RG000532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., T. Phillips, G. J. Marshall, J. S. Hosking, J. O. Pope, T. J. Bracegirdle, and P. Deb, 2017b: Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophys. Res. Lett., 44, 68686875, https://doi.org/10.1002/2017GL073656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Broeke, M., 2005: Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophys. Res. Lett., 32, L12815, https://doi.org/10.1029/2005GL023247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Tricht, K., and Coauthors, 2016: Clouds enhance Greenland ice sheet meltwater runoff. Nat. Commun., 7, 10 266, doi:10.1038/ncomms10266.

  • Wang, G., W. Cai, B. Gan, L. Wu, A. Santoso, X. Lin, Z. Chen, and M. J. McPhaden, 2017: Continued increase of extreme El Niño frequency long after 1.5°C warming stabilization. Nat. Climate Change, 7, 568572, https://doi.org/10.1038/nclimate3351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wise, M. G., J. A. Dowdeswell, M. Jakobsson, and R. D. Larter, 2017: Evidence of marine ice-cliff instability in Pine Island Bay from iceberg-keel plough marks. Nature, 550, 506510, https://doi.org/10.1038/nature24458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwally, H. J., and S. Fiegles, 1994: Extent and duration of Antarctic surface melting. J. Glaciol., 40, 463475, https://doi.org/10.1017/S0022143000012338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwally, H. J., W. Abdalati, T. Herring, K. Larson, J. Saba, and K. Steffen, 2002: Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297, 218222, https://doi.org/10.1126/science.1072708.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1118 575 37
PDF Downloads 1123 607 39

Meteorological Drivers and Large-Scale Climate Forcing of West Antarctic Surface Melt

View More View Less
  • 1 Scripps Institution of Oceanography, La Jolla, California
  • | 2 Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio
  • | 3 Scripps Institution of Oceanography, La Jolla, California
Restricted access

Abstract

Understanding the drivers of surface melting in West Antarctica is crucial for understanding future ice loss and global sea level rise. This study identifies atmospheric drivers of surface melt on West Antarctic ice shelves and ice sheet margins and relationships with tropical Pacific and high-latitude climate forcing using multidecadal reanalysis and satellite datasets. Physical drivers of ice melt are diagnosed by comparing satellite-observed melt patterns to anomalies of reanalysis near-surface air temperature, winds, and satellite-derived cloud cover, radiative fluxes, and sea ice concentration based on an Antarctic summer synoptic climatology spanning 1979–2017. Summer warming in West Antarctica is favored by Amundsen Sea (AS) blocking activity and a negative phase of the southern annular mode (SAM), which both correlate with El Niño conditions in the tropical Pacific Ocean. Extensive melt events on the Ross–Amundsen sector of the West Antarctic Ice Sheet (WAIS) are linked to persistent, intense AS blocking anticyclones, which force intrusions of marine air over the ice sheet. Surface melting is primarily driven by enhanced downwelling longwave radiation from clouds and a warm, moist atmosphere and by turbulent mixing of sensible heat to the surface by föhn winds. Since the late 1990s, concurrent with ocean-driven WAIS mass loss, summer surface melt occurrence has increased from the Amundsen Sea Embayment to the eastern Ross Ice Shelf. We link this change to increasing anticyclonic advection of marine air into West Antarctica, amplified by increasing air–sea fluxes associated with declining sea ice concentration in the coastal Ross–Amundsen Seas.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0233.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ryan C. Scott, rcscott@ucsd.edu

Abstract

Understanding the drivers of surface melting in West Antarctica is crucial for understanding future ice loss and global sea level rise. This study identifies atmospheric drivers of surface melt on West Antarctic ice shelves and ice sheet margins and relationships with tropical Pacific and high-latitude climate forcing using multidecadal reanalysis and satellite datasets. Physical drivers of ice melt are diagnosed by comparing satellite-observed melt patterns to anomalies of reanalysis near-surface air temperature, winds, and satellite-derived cloud cover, radiative fluxes, and sea ice concentration based on an Antarctic summer synoptic climatology spanning 1979–2017. Summer warming in West Antarctica is favored by Amundsen Sea (AS) blocking activity and a negative phase of the southern annular mode (SAM), which both correlate with El Niño conditions in the tropical Pacific Ocean. Extensive melt events on the Ross–Amundsen sector of the West Antarctic Ice Sheet (WAIS) are linked to persistent, intense AS blocking anticyclones, which force intrusions of marine air over the ice sheet. Surface melting is primarily driven by enhanced downwelling longwave radiation from clouds and a warm, moist atmosphere and by turbulent mixing of sensible heat to the surface by föhn winds. Since the late 1990s, concurrent with ocean-driven WAIS mass loss, summer surface melt occurrence has increased from the Amundsen Sea Embayment to the eastern Ross Ice Shelf. We link this change to increasing anticyclonic advection of marine air into West Antarctica, amplified by increasing air–sea fluxes associated with declining sea ice concentration in the coastal Ross–Amundsen Seas.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0233.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ryan C. Scott, rcscott@ucsd.edu

Supplementary Materials

    • Supplemental Materials (PDF 59.86 MB)
Save