Combined Use of Multiple Drought Indices for Global Assessment of Dry Gets Drier and Wet Gets Wetter Paradigm

Tao Yang Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Tao Yang in
Current site
Google Scholar
PubMed
Close
,
Jinzhi Ding Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Jinzhi Ding in
Current site
Google Scholar
PubMed
Close
,
Dan Liu Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Dan Liu in
Current site
Google Scholar
PubMed
Close
,
Xiaoyi Wang Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Xiaoyi Wang in
Current site
Google Scholar
PubMed
Close
, and
Tao Wang Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, and CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, and School of Life Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Tao Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global warming is expected to enhance the global hydrological cycle, leading dry regions to become drier and wet regions to become wetter (the DDWW paradigm). However, this hypothesis has been challenged by both observational and modeling studies. One major source of these disagreements originates from the choice of the drought indices used. Hydrological processes are complex, but drought indices are often based on a relatively simple calculation. A single index may, therefore, place undue emphasis on particular processes while ignoring others, with the result that it would not capture the holistic picture of hydrological changes and may even lead to an incorrect interpretation. Six common drought indices were calculated for the global vegetated land areas for the period from 1982 to 2012 and different indices tend to create apparently contradictory results for many regions. To overcome the single-index problem, the six drought indices were integrated into a composite map of global land moisture trends. By using this integrated approach, the majority (55%) of vegetated land areas experienced wetting or drying trends. For the regions with significant changes, supporting evidence was identified for the DDWW paradigm in one-fifth of the area. The opposite pattern to DDWW (dry areas becoming wetter and wet areas drier) occurred over 29% of the area. We also find an asymmetrical pattern with a larger proportion of wet areas getting wetter (12%) than dry areas getting drier (8%). The DDWW theory is more useful when the pure precipitation-driven drought metrics are considered but when evapotranspiration and soil conditions are integrated, the DDWW is not conclusive.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0261.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jinzhi Ding, jzding@itpcas.ac.cn; Tao Wang, twang@itpcas.ac.cn

Abstract

Global warming is expected to enhance the global hydrological cycle, leading dry regions to become drier and wet regions to become wetter (the DDWW paradigm). However, this hypothesis has been challenged by both observational and modeling studies. One major source of these disagreements originates from the choice of the drought indices used. Hydrological processes are complex, but drought indices are often based on a relatively simple calculation. A single index may, therefore, place undue emphasis on particular processes while ignoring others, with the result that it would not capture the holistic picture of hydrological changes and may even lead to an incorrect interpretation. Six common drought indices were calculated for the global vegetated land areas for the period from 1982 to 2012 and different indices tend to create apparently contradictory results for many regions. To overcome the single-index problem, the six drought indices were integrated into a composite map of global land moisture trends. By using this integrated approach, the majority (55%) of vegetated land areas experienced wetting or drying trends. For the regions with significant changes, supporting evidence was identified for the DDWW paradigm in one-fifth of the area. The opposite pattern to DDWW (dry areas becoming wetter and wet areas drier) occurred over 29% of the area. We also find an asymmetrical pattern with a larger proportion of wet areas getting wetter (12%) than dry areas getting drier (8%). The DDWW theory is more useful when the pure precipitation-driven drought metrics are considered but when evapotranspiration and soil conditions are integrated, the DDWW is not conclusive.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0261.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jinzhi Ding, jzding@itpcas.ac.cn; Tao Wang, twang@itpcas.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.72 MB)
Save
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration—Guidelines for computing crop water requirements. FAO Rep. 56, 15 pp., https://appgeodb.nancy.inra.fr/biljou/pdf/Allen_FAO1998.pdf.

  • Alley, W. M., 1984: The Palmer drought severity index: Limitations and assumptions. J. Climate Appl. Meteor., 23, 11001109, https://doi.org/10.1175/1520-0450(1984)023<1100:TPDSIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anabalón, A., and A. Sharma, 2017: On the divergence of potential and actual evapotranspiration trends: An assessment across alternate global datasets. Earth’s Future, 5, 905917, https://doi.org/10.1002/2016EF000499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A., and J. Sheffield, 2018: Climate change and drought: The soil moisture perspective. Curr. Climate Change Rep., 4, 180191, https://doi.org/10.1007/s40641-018-0095-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briffa, K. R., G. van der Schrier, and P. D. Jones, 2009: Wet and dry summers in Europe since 1750: Evidence of increasing drought. Int. J. Climatol., 29, 18941905, https://doi.org/10.1002/joc.1836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, E. J., and S. J. Brown, 2008: Evaluating uncertainties in the projection of future drought. J. Hydrometeor., 9, 292299, https://doi.org/10.1175/2007JHM929.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2015: The response of precipitation minus evapotranspiration to climate warming: Why the “wet-get-wetter, dry-get-drier” scaling does not hold over land. J. Climate, 28, 80788092, https://doi.org/10.1175/JCLI-D-15-0369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, C.-A. Chen, and J.-Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005, https://doi.org/10.1175/2008JCLI2471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., J. E. Smerdon, R. Seager, and S. Coats, 2014: Global warming and 21st century drying. Climate Dyn., 43, 26072627, https://doi.org/10.1007/s00382-014-2075-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011: Drought under global warming: A review. Wiley Interdiscip. Rev.: Climate Change, 2, 4565, https://doi.org/10.1002/wcc.81; Corrigendum, 3, 617, https://doi.org/10.1002/wcc.190.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, https://doi.org/10.1038/nclimate1633; Corrigendum, 3, 171, https://doi.org/10.1038/nclimate1811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2016: Historical and future changes in streamflow and continental runoff. Terrestrial Water Cycle and Climate Change, Geophys. Monogr., Vol. 221, Amer. Geophys. Union, 17–37, https://doi.org/10.1002/9781118971772.ch2.

    • Crossref
    • Export Citation
  • Dai, A., K. E. Trenberth, and T. Qian, 2004: A global data set of Palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeor., 5, 11171130, https://doi.org/10.1175/JHM-386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, J., and Coauthors, 2018: Increasingly important role of atmospheric aridity on Tibetan alpine grasslands. Geophys. Res. Lett., 45, 28522859, https://doi.org/10.1002/2017GL076803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinku, T., P. Ceccato, and S. J. Connor, 2011: Challenges of satellite rainfall estimation over mountainous and arid parts of East Africa. Int. J. Remote Sens., 32, 59655979, https://doi.org/10.1080/01431161.2010.499381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farahmand, A., and A. Aghakouchak, 2015: A generalized framework for deriving nonparametric standardized drought indicators. Adv. Water Resour., 76, 140145, https://doi.org/10.1016/j.advwatres.2014.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, H., and M. Zhang, 2015: Global land moisture trends: Drier in dry and wetter in wet over land. Sci. Rep., 5, 18018, https://doi.org/10.1038/srep18018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., and Q. Fu, 2013: Expansion of global drylands under a warming climate. Atmos. Chem. Phys., 13, 10 08110 094, https://doi.org/10.5194/acp-13-10081-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilbert, R. O., 1988: Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold Co., 336 pp.

    • Crossref
    • Export Citation
  • Greve, P., and S. I. Seneviratne, 2015: Assessment of future changes in water availability and aridity. Geophys. Res. Lett., 42, 54935499, https://doi.org/10.1002/2015GL064127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greve, P., B. Orlowsky, B. Mueller, J. Sheffield, M. Reichstein, and S. I. Seneviratne, 2014: Global assessment of trends in wetting and drying over land. Nat. Geosci., 7, 716721, https://doi.org/10.1038/ngeo2247; Corrigendum, 7, 848, https://doi.org/10.1038/ngeo2274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1; Corrigendum, 24, 1559–1560, https://doi.org/10.1175/2010JCLI4045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoekstra, A. Y., and M. M. Mekonnen, 2012: The water footprint of humanity. Proc. Natl. Acad. Sci. USA, 109, 32323237, https://doi.org/10.1073/pnas.1109936109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., M. Ji, Y. Xie, S. Wang, Y. He, and J. Ran, 2016: Global semi-arid climate change over last 60 years. Climate Dyn., 46, 11311150, https://doi.org/10.1007/s00382-015-2636-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulme, M., R. Marsh, and P. D. Jones, 1992: Global changes in a humidity index between 1931–60 and 1961–90. Climate Res., 2, 122, https://doi.org/10.3354/cr002001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319, 8395, https://doi.org/10.1016/j.jhydrol.2005.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, M. E., R. D. Burman, and R. G. Allen, 1990: Evapotranspiration and Irrigation Water Requirements: A manual. American Society of Civil Engineers, 332 pp., https://doi.org/10.1061/9780784414057.

    • Crossref
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, https://doi.org/10.1038/nature09396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. 4th ed. Charles Griffin, 202 pp.

  • Kumar, S., R. P. Allan, F. Zwiers, D. M. Lawrence, and P. A. Dirmeyer, 2015: Revisiting trends in wetness and dryness in the presence of internal climate variability and water limitations over land. Geophys. Res. Lett., 42, 10 86710 875, https://doi.org/10.1002/2015GL066858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and R. P. Allan, 2013: Observed and simulated precipitation responses in wet and dry regions 1850–2100. Environ. Res. Lett., 8, 034002, http://iopscience.iop.org/1748-9326/8/3/034002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, https://doi.org/10.1029/2006GL028443; Corrigendum, 34, L14808, https://doi.org/10.1029/2007GL030931.

    • Search Google Scholar
    • Export Citation
  • Lu, J., D. Xue, Y. Gao, G. Chen, L. R. Leung, and P. Staten, 2018: Enhanced hydrological extremes in the western United States under global warming through the lens of water vapor wave activity. Climate Atmos. Sci., 1, 7, https://doi.org/10.1038/s41612-017-0007-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Mao, J., and Coauthors, 2015: Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Environ. Res. Lett., 10, 094008, http://iopscience.iop.org/article/10.1088/1748-9326/10/9/094008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martens, B., and Coauthors, 2017: Gleam v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10, 19031925, https://doi.org/10.5194/gmd-10-1903-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.

  • Miralles, D. G., R. A. M. de Jeu, J. H. Gash, T. R. H. Holmes, and A. J. Dolman, 2011: Magnitude and variability of land evaporation and its components at the global scale. Hydrol. Earth Syst. Sci., 15, 967981, https://doi.org/10.5194/hess-15-967-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., and V. P. Singh, 2011: Drought modeling—A review. J. Hydrometeor., 403, 157175, https://doi.org/10.1016/j.jhydrol.2011.03.049.

    • Search Google Scholar
    • Export Citation
  • Mu, Q., F. A. Heinsch, M. Zhao, and S. W. Running, 2007: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ., 111, 519536, https://doi.org/10.1016/j.rse.2007.04.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, W., 1965: Meteorological drought. U.S. Weather Bureau Research Paper 45, 65 pp., https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf.

  • Peñuelas, J., and Coauthors, 2017: Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environ. Exp. Bot., 152, 4959, https://doi.org/10.1016/j.envexpbot.2017.05.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, S., and Coauthors, 2010: The impacts of climate change on water resources and agriculture in China. Nature, 467, 4351, https://doi.org/10.1038/nature09364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quiring, S. M., and S. Ganesh, 2010: Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas. Agric. For. Meteor., 150, 330339, https://doi.org/10.1016/j.agrformet.2009.11.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., R. D. Koster, J. Dong, and A. A. Berg, 2004: Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation. J. Hydrometeor., 5, 430442, https://doi.org/10.1175/1525-7541(2004)005<0430:GSMFSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. M. W. Frierson, 2012: Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett., 39, L18704, https://doi.org/10.1029/2012GL052910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlaepfer, D. R., and Coauthors, 2017: Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun., 8, 14196, https://doi.org/10.1038/ncomms14196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and G. A. Vecchi, 2010: Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc. Natl. Acad. Sci. USA, 107, 21 27721 282, https://doi.org/10.1073/pnas.0910856107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E.B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and E. F. Wood, 2008: Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dyn., 31, 79105, https://doi.org/10.1007/s00382-007-0340-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., G. Goteti, F. Wen, and E. F. Wood, 2004: A simulated soil moisture based drought analysis for the United States. J. Geophys. Res., 109, D24108, https://doi.org/10.1029/2004JD005182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., E. F. Wood, and M. L. Roderick, 2012: Little change in global drought over the past 60 years. Nature, 491, 435438, https://doi.org/10.1038/nature11575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stagge, J. H., D. G. Kingston, L. M. Tallaksen, and D. M. Hannah, 2017: Observed drought indices show increasing divergence across Europe. Sci. Rep., 7, 14045, https://doi.org/10.1038/s41598-017-14283-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., and C. D. Koven, 2017: A direct estimate of the seasonal cycle of evapotranspiration over the Amazon basin. J. Hydrometeor., 18, 21732185, https://doi.org/10.1175/JHM-D-17-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., F. M. Hoffman, C. D. Koven, and J. T. Randerson, 2016: Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl. Acad. Sci. USA, 113, 10 01910 0024, https://doi.org/10.1073/pnas.1604581113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, P. K., P. J. Ericksen, M. Herrero, and A. J. Challinor, 2014: Climate variability and vulnerability to climate change: A review. Global Change Biol., 20, 33133328, https://doi.org/10.1111/gcb.12581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, G. van der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield, 2014: Global warming and changes in drought. Nat. Climate Change, 4, 1722, https://doi.org/10.1038/nclimate2067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UNEP, 1992: World Atlas of Desertification. Edward Arnold, 69 pp.

  • Vicente-Serrano, S. M., 2006: Differences in spatial patterns of drought on different time scales: An analysis of the Iberian Peninsula. Water Resour. Manage., 20, 3760, https://doi.org/10.1007/s11269-006-2974-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno, 2010: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 16961718, https://doi.org/10.1175/2009JCLI2909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., and Coauthors, 2012: Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact., 16, https://doi.org/10.1175/2012EI000434.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., G. Van der Schrier, S. Beguería, C. Azorin-Molina, and J.-I. Lopez-Moreno, 2015: Contribution of precipitation and reference evapotranspiration to drought indices under different climates. J. Hydrol., 526, 4254, https://doi.org/10.1016/j.jhydrol.2014.11.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., 2005: Agricultural drought in a future climate: Results from 15 global climate models participating in the IPCC 4th assessment. Climate Dyn., 25, 739753, https://doi.org/10.1007/s00382-005-0057-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., T. Wang, D. Liu, H. Guo, H. Huang, and Y. Zhao, 2017: Moisture-induced greening of the South Asia over the past three decades. Global Change Biol., 23, 49955005, https://doi.org/10.1111/gcb.13762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yilmaz, M. T., W. T. Crow, and D. Ryu, 2016: Impact of model relative accuracy in framework of rescaling observations in hydrological data assimilation studies. J. Hydrometeor., 17, 22452257, https://doi.org/10.1175/JHM-D-15-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., and A. Dai, 2015: The magnitude and causes of global drought changes in the twenty-first century under a low-moderate emissions scenario. J. Climate, 28, 44904512, https://doi.org/10.1175/JCLI-D-14-00363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1662 462 52
PDF Downloads 1444 318 23