Exploiting the Abrupt 4 × CO2 Scenario to Elucidate Tropical Expansion Mechanisms

Rei Chemke Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by Rei Chemke in
Current site
Google Scholar
PubMed
Close
and
Lorenzo M. Polvani Department of Earth and Environmental Sciences, and Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Lorenzo M. Polvani in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Future emissions of greenhouse gases into the atmosphere are projected to result in significant circulation changes. One of the most important changes is the widening of the tropical belt, which has great societal impacts. Several mechanisms (changes in surface temperature, eddy phase speed, tropopause height, and static stability) have been proposed to explain this widening. However, the coupling between these mechanisms has precluded elucidating their relative importance. Here, the abrupt quadrupled-CO2 simulations of phase 5 of the Coupled Model Intercomparison Project (CMIP5) are used to examine the proposed mechanisms. The different time responses of the different mechanisms allow us to disentangle and evaluate them. As suggested by earlier studies, the Hadley cell edge is found to be linked to changes in subtropical baroclinicity. In particular, its poleward shift is accompanied by an increase in subtropical static stability (i.e., a decrease in temperature lapse rate) with increased CO2 concentrations. These subtropical changes also affect the eddy momentum flux, which shifts poleward together with the Hadley cell edge. Transient changes in tropopause height, eddy phase speed, and surface temperature, however, were found not to accompany the poleward shift of the Hadley cell edge. The widening of the Hadley cell, together with the increase in moisture content, accounts for most of the expansion of the dry zone. Eddy moisture fluxes, on the other hand, are found to play a minor role in the expansion of the dry zone.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rei Chemke, rc3101@columbia.edu

Abstract

Future emissions of greenhouse gases into the atmosphere are projected to result in significant circulation changes. One of the most important changes is the widening of the tropical belt, which has great societal impacts. Several mechanisms (changes in surface temperature, eddy phase speed, tropopause height, and static stability) have been proposed to explain this widening. However, the coupling between these mechanisms has precluded elucidating their relative importance. Here, the abrupt quadrupled-CO2 simulations of phase 5 of the Coupled Model Intercomparison Project (CMIP5) are used to examine the proposed mechanisms. The different time responses of the different mechanisms allow us to disentangle and evaluate them. As suggested by earlier studies, the Hadley cell edge is found to be linked to changes in subtropical baroclinicity. In particular, its poleward shift is accompanied by an increase in subtropical static stability (i.e., a decrease in temperature lapse rate) with increased CO2 concentrations. These subtropical changes also affect the eddy momentum flux, which shifts poleward together with the Hadley cell edge. Transient changes in tropopause height, eddy phase speed, and surface temperature, however, were found not to accompany the poleward shift of the Hadley cell edge. The widening of the Hadley cell, together with the increase in moisture content, accounts for most of the expansion of the dry zone. Eddy moisture fluxes, on the other hand, are found to play a minor role in the expansion of the dry zone.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rei Chemke, rc3101@columbia.edu
Save
  • Adam, O., T. Schneider, and N. Harnik, 2014: Role of changes in mean temperatures versus temperature gradients in the recent widening of the Hadley circulation. J. Climate, 27, 74507461, https://doi.org/10.1175/JCLI-D-14-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., and O. Ajoku, 2016: Future aerosol reductions and widening of the northern tropical belt. J. Geophys. Res., 121, 67656786, https://doi.org/10.1002/2016JD024803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., and M. Kovilakam, 2017: The role of natural climate variability in recent tropical expansion. J. Climate, 30, 63296350, https://doi.org/10.1175/JCLI-D-16-0735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., S. C. Sherwood, J. R. Norris, and C. S. Zender, 2012: Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature, 485, 350354, https://doi.org/10.1038/nature11097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., J. R. Norris, and M. Kovilakam, 2014: Influence of anthropogenic aerosols and the Pacific decadal oscillation on tropical belt width. Nat. Geosci., 7, 270274, https://doi.org/10.1038/ngeo2091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archer, C. L., and K. Caldeira, 2008: Historical trends in the jet streams. Geophys. Res. Lett., 35, L08803, https://doi.org/10.1029/2008GL033614.

  • Barnes, E. A., N. W. Barnes, and L. M. Polvani, 2014: Delayed Southern Hemisphere climate change induced by stratospheric ozone recovery, as projected by the CMIP5 models. J. Climate, 27, 852867, https://doi.org/10.1175/JCLI-D-13-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., G. Bellon, D. Klocke, S. Sherwood, S. Fermepin, and S. Denvil, 2013: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci., 6, 447451, https://doi.org/10.1038/ngeo1799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. L. Hartmann, 2013: On the speed of the eddy-driven jet and the width of the Hadley cell in the Southern Hemisphere. J. Climate, 26, 34503465, https://doi.org/10.1175/JCLI-D-12-00414.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 136162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., and Y. Kaspi, 2015: The latitudinal dependence of atmospheric jet scales and macroturbulent energy cascades. J. Atmos. Sci., 72, 38913907, https://doi.org/10.1175/JAS-D-15-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., and Y. Kaspi, 2016a: The effect of eddy–eddy interactions on jet formation and macroturbulent scales. J. Atmos. Sci., 73, 20492059, https://doi.org/10.1175/JAS-D-15-0375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., and Y. Kaspi, 2016b: The latitudinal dependence of the oceanic barotropic eddy kinetic energy and macroturbulence energy transport. Geophys. Res. Lett., 43, 27232731, https://doi.org/10.1002/2016GL067847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., and L. M. Polvani, 2018: Ocean circulation reduces the Hadley cell response to increased greenhouse gases. Geophys. Res. Lett., 45, 91979205, https://doi.org/10.1029/2018GL079070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., T. Dror, and Y. Kaspi, 2016: Barotropic kinetic energy and enstrophy transfers in the atmosphere. Geophys. Res. Lett., 43, 77257734, https://doi.org/10.1002/2016GL070350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett., 34, L21805, https://doi.org/10.1029/2007GL031200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Agostino, R., and P. Lionello, 2017: Evidence of global warming impact on the evolution of the Hadley circulation in ECMWF centennial reanalyses. Climate Dyn., 48, 30473060, https://doi.org/10.1007/s00382-016-3250-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, N., and T. Birner, 2017: On the discrepancies in tropical belt expansion between reanalyses and climate models and among tropical belt width metrics. J. Climate, 30, 12111231, https://doi.org/10.1175/JCLI-D-16-0371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, S. M., and K. H. Rosenlof, 2012: A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J. Climate, 25, 10611078, https://doi.org/10.1175/JCLI-D-11-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, https://doi.org/10.1175/JCLI-D-11-00560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Frierson, D. M. W., J. Lu, and G. Chen, 2007: Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, L18804, https://doi.org/10.1029/2007GL031115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., C. M. Johanson, J. M. Wallace, and T. Reichler, 2006: Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312, 1179, https://doi.org/10.1126/science.1125566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2017: Understanding the time scales of the tropospheric circulation response to abrupt CO2 forcing in the Southern Hemisphere: seasonality and the role of the stratosphere. J. Climate, 30, 84978515, https://doi.org/10.1175/JCLI-D-16-0849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2000: The general circulation of the atmosphere. Program in Geophysical Fluid Dynamics, Woods Hole Oceanographic Institute, 179 pp., https://darchive.mblwhoilibrary.org/handle/1912/15.

  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 52295236, https://doi.org/10.5194/acp-7-5229-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., L. Tao, and J. Liu, 2013: Poleward expansion of the Hadley circulation in CMIP5 simulations. Adv. Atmos. Sci., 30, 790795, https://doi.org/10.1007/s00376-012-2187-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, R. D., M. F. Andrade, M. B. Follette, and A. D. Frolov, 2006: The total ozone field separated into meteorological regimes—Part II: Northern Hemisphere mid-latitude total ozone trends. Atmos. Chem. Phys., 6, 51835191, https://doi.org/10.5194/acp-6-5183-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Basis, T. F. Stocker et al., Eds., Cambridge University Press, 3–29.

  • IPCC, 2014: Summary for policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability, C. B. Field et al., Eds., Cambridge University Press, 1–32.

  • Jansen, M., and R. Ferrari, 2012: Macroturbulent equilibration in a thermally forced primitive equation system. J. Atmos. Sci., 69, 695713, https://doi.org/10.1175/JAS-D-11-041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., C. Deser, and L. M. Polvani, 2013: Uncertainty in climate change projections of the Hadley circulation: The role of internal variability. J. Climate, 26, 75417554, https://doi.org/10.1175/JCLI-D-12-00788.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, X. J., and T. Schneider, 2015: Baroclinic eddies and the extent of the Hadley circulation: An idealized GCM study. J. Atmos. Sci., 72, 27442761, https://doi.org/10.1175/JAS-D-14-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, https://doi.org/10.1029/2006JD008087.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, https://doi.org/10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851, https://doi.org/10.1175/2008JCLI2200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., C. Deser, and T. Reichler, 2009: Cause of the widening of the tropical belt since 1958. Geophys. Res. Lett., 36, L03803, https://doi.org/10.1029/2008GL036076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., L. Sun, Y. Wu, and G. Chen, 2014: The role of subtropical irreversible PV mixing in the zonal mean circulation response to global warming-like thermal forcing. J. Climate, 27, 22972316, https://doi.org/10.1175/JCLI-D-13-00372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, C., and H. Nguyen, 2015: Regional characteristics of tropical expansion and the role of climate variability. J. Geophys. Res. Atmos., 120, 68096824, https://doi.org/10.1002/2015JD023130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, C., B. Timbal, and H. Nguyen, 2014: The expanding tropics: A critical assessment of the observational and modeling studies. Wiley Interdiscip. Rev.: Climate Change, 5, 89112, https://doi.org/10.1002/wcc.251.

    • Search Google Scholar
    • Export Citation
  • Mantsis, D. F., S. Sherwood, R. Allen, and L. Shi, 2017: Natural variations of tropical width and recent trends. Geophys. Res. Lett., 44, 38253832, https://doi.org/10.1002/2016GL072097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, H., A. Evans, C. Lucas, I. Smith, and B. Timbal, 2013: The Hadley circulation in reanalyses: Climatology, variability, and change. J. Climate, 26, 33573376, https://doi.org/10.1175/JCLI-D-12-00224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1954: Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level quasi-geostrophic model. Tellus, 6, 273286, https://doi.org/10.1111/j.2153-3490.1954.tb01123.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., M. Previdi, and C. Deser, 2011a: Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophys. Res. Lett., 38, L04707, https://doi.org/10.1029/2011GL046712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S.-W. Son, 2011b: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, https://doi.org/10.1175/2010JCLI3772.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, X.-W., M. P. Hoerling, J. Perlwitz, H. F. Diaz, and T. Xu, 2014: How fast are the tropics expanding? J. Climate, 27, 19992013, https://doi.org/10.1175/JCLI-D-13-00287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697, https://doi.org/10.1175/1520-0469(1991)048<0688:PSSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2003: Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science, 301, 479483, https://doi.org/10.1126/science.1084123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. M. W. Frierson, 2012: Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett., 39, L18704, https://doi.org/10.1029/2012GL052910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, https://doi.org/10.1038/ngeo.2007.38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., S. M. Davis, K. M. Grise, and D. W. Waugh, 2018: Large uncertainty in the relative rates of dynamical and hydrological tropical expansion. Geophys. Res. Lett., 45, 11061113, https://doi.org/10.1002/2017GL076335..

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and A. Voigt, 2016: Understanding the links between subtropical and extratropical circulation responses to climate change using aquaplanet model simulations. J. Climate, 29, 66376657, https://doi.org/10.1175/JCLI-D-16-0049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and Z. Tan, 2018: Testing latitudinally dependent explanations of the circulation response to increased CO2 using aquaplanet models. Geophys. Res. Lett., 45, 98619869, https://doi.org/10.1029/2018GL078974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2007: The geography of linear baroclinic instability in Earth’s oceans. J. Mar. Res., 65, 655683, https://doi.org/10.1357/002224007783649484

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., L. M. Polvani, D. W. Waugh, and S. M. Davis, 2016: Contrasting upper and lower atmospheric metrics of tropical expansion in the Southern Hemisphere. Geophys. Res. Lett., 43, 10 49610 503, https://doi.org/10.1002/2016GL070917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S.-W., N. F. Tandon, L. M. Polvani, and D. W. Waugh, 2009: Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett., 36, L15705, https://doi.org/10.1029/2009GL038671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S.-W., S.-Y. Kim, and S.-K. Min, 2018: Widening of the Hadley cell from Last Glacial Maximum to future climate. J. Climate, 31, 267281, https://doi.org/10.1175/JCLI-D-17-0328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staten, P. W., J. J. Rutz, T. Reichler, and J. Lu, 2012: Breaking down the tropospheric circulation response by forcing. Climate Dyn., 39, 23612375, https://doi.org/10.1007/s00382-011-1267-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staten, P. W., T. Reichler, and J. Lu, 2014: The transient circulation response to radiative forcings and sea surface warming. J. Climate, 27, 93239336, https://doi.org/10.1175/JCLI-D-14-00035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tandon, N. F., E. P. Gerber, A. H. Sobel, and L. M. Polvani, 2013: Understanding Hadley cell expansion versus contraction: Insights from simplified models and implications for recent observations. J. Climate, 26, 43044321, https://doi.org/10.1175/JCLI-D-12-00598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thuburn, J., and G. C. Craig, 1997: GCM tests of theories for the height of the tropopause. J. Atmos. Sci., 54, 869882, https://doi.org/10.1175/1520-0469(1997)054<0869:GTOTFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thuburn, J., and G. C. Craig, 2000: Stratospheric influence on tropopause height: The radiative constraint. J. Atmos. Sci., 57, 1728, https://doi.org/10.1175/1520-0469(2000)057<0017:SIOTHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1995: Evaluation of the global atmospheric moisture budget as seen from analyses. J. Climate, 8, 22552272, https://doi.org/10.1175/1520-0442(1995)008<2255:EOTGAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 770 pp.

  • Vallis, G. K., P. Zurita-Gotor, C. Cairns, and J. Kidston, 2015: Response of the large-scale structure of the atmosphere to global warming. Quart. J. Roy. Meteor. Soc., 141, 14791501, https://doi.org/10.1002/qj.2456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 33333350, https://doi.org/10.1175/JAS3821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., C. I. Garfinkel, and L. M. Polvani, 2015: Drivers of the recent tropical expansion in the Southern Hemisphere: Changing SSTs or ozone depletion? J. Climate, 28, 65816586, https://doi.org/10.1175/JCLI-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wittman, M. A. H., A. J. Charlton, and L. M. Polvani, 2007: The effect of lower stratospheric shear on baroclinic instability. J. Atmos. Sci., 64, 479496, https://doi.org/10.1175/JAS3828.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., R. Seager, M. Ting, N. Naik, and T. A. Shaw, 2012: Atmospheric circulation response to an instantaneous doubling of carbon dioxide. Part I: Model experiments and transient thermal response in the troposphere. J. Climate, 25, 28622879, https://doi.org/10.1175/JCLI-D-11-00284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., R. Seager, T. A. Shaw, M. Ting, and N. Naik, 2013: Atmospheric circulation response to an instantaneous doubling of carbon dioxide. Part II: Atmospheric transient adjustment and its dynamics. J. Climate, 26, 918935, https://doi.org/10.1175/JCLI-D-12-00104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1432 456 61
PDF Downloads 1214 252 20