The British–Baikal Corridor: A Teleconnection Pattern along the Summertime Polar Front Jet over Eurasia

Peiqiang Xu Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, and College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, and
Joint Center for Global Change Studies, Beijing, China

Search for other papers by Peiqiang Xu in
Current site
Google Scholar
PubMed
Close
,
Lin Wang Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, and College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, and
Joint Center for Global Change Studies, Beijing, China

Search for other papers by Lin Wang in
Current site
Google Scholar
PubMed
Close
, and
Wen Chen Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, and College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, and
Joint Center for Global Change Studies, Beijing, China

Search for other papers by Wen Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The British–Baikal Corridor (BBC) pattern, a new teleconnection along the summertime upper-tropospheric polar front jet (PFJ), is investigated based on observational and reanalysis datasets. The BBC pattern consists of four geographically fixed centers over the west of the British Isles, the Baltic Sea, western Siberia, and Lake Baikal, respectively. It features a zonally oriented and meridionally confined wavelike structure with a zonal wavenumber 5, and it influences the climate along its route significantly. The BBC pattern forms from the trapped effect of the PFJ waveguide that is characterized by a strong meridional gradient of stratification. As a preferred dynamical mode inherent in the PFJ, it is maintained through the baroclinic energy conversion from the basic flow and the feedback forcing of high-frequency transient eddies. Meanwhile, its geographical location is determined by the barotropic energy conversion, which is sensitive to the configuration of the basic flow. The interannual variability of the BBC pattern is dominated by atmospheric internal dynamics considering its loose relation with immediate atmospheric external forcing. Further analyses suggest that the BBC pattern is excited by the active multiscale interactions among the climatological mean flow, the low-frequency flow, and the synoptic-scale transient eddies in the exit region of the North Atlantic jet, which may also determine the preferential upstream forcing region and anchor the BBC pattern geographically. Budget analyses on vorticity, temperature, and water vapor are performed to interpret the physical nature of the BBC pattern. The possible linkage to the North Atlantic Oscillation is also discussed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Lin Wang, wanglin@mail.iap.ac.cn

Abstract

The British–Baikal Corridor (BBC) pattern, a new teleconnection along the summertime upper-tropospheric polar front jet (PFJ), is investigated based on observational and reanalysis datasets. The BBC pattern consists of four geographically fixed centers over the west of the British Isles, the Baltic Sea, western Siberia, and Lake Baikal, respectively. It features a zonally oriented and meridionally confined wavelike structure with a zonal wavenumber 5, and it influences the climate along its route significantly. The BBC pattern forms from the trapped effect of the PFJ waveguide that is characterized by a strong meridional gradient of stratification. As a preferred dynamical mode inherent in the PFJ, it is maintained through the baroclinic energy conversion from the basic flow and the feedback forcing of high-frequency transient eddies. Meanwhile, its geographical location is determined by the barotropic energy conversion, which is sensitive to the configuration of the basic flow. The interannual variability of the BBC pattern is dominated by atmospheric internal dynamics considering its loose relation with immediate atmospheric external forcing. Further analyses suggest that the BBC pattern is excited by the active multiscale interactions among the climatological mean flow, the low-frequency flow, and the synoptic-scale transient eddies in the exit region of the North Atlantic jet, which may also determine the preferential upstream forcing region and anchor the BBC pattern geographically. Budget analyses on vorticity, temperature, and water vapor are performed to interpret the physical nature of the BBC pattern. The possible linkage to the North Atlantic Oscillation is also discussed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Lin Wang, wanglin@mail.iap.ac.cn
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambrizzi, T., and B. J. Hoskins, 1997: Stationary Rossby-wave propagation in a baroclinic atmosphere. Quart. J. Roy. Meteor. Soc., 123, 919928, https://doi.org/10.1002/qj.49712354007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambrizzi, T., B. J. Hoskins, and H.-H. Hsu, 1995: Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci., 52, 36613672, https://doi.org/10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arai, M., and M. Kimoto, 2005: Relationship between springtime surface temperature and early summer blocking activity over Siberia. J. Meteor. Soc. Japan, 83, 261267, https://doi.org/10.2151/jmsj.83.261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H., 1992: Synoptic-Dynamic Meteorology in Midlatitudes. Oxford University Press, 276 pp.

  • Brandefelt, J., and H. Körnich, 2008: Northern Hemisphere stationary waves in future climate projections. J. Climate, 21, 63416353, https://doi.org/10.1175/2008JCLI2373.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1983: Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure. J. Atmos. Sci., 40, 16891708, https://doi.org/10.1175/1520-0469(1983)040<1689:HEPIAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1985: Analysis of general circulation model sea-surface temperature anomaly simulations using a linear model. Part I: Forced solutions. J. Atmos. Sci., 42, 22252241, https://doi.org/10.1175/1520-0469(1985)042<2225:AOGCMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1990: Low-frequency patterns induced by stationary waves. J. Atmos. Sci., 47, 629649, https://doi.org/10.1175/1520-0469(1990)047<0629:LFPIBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1992: The maintenance of low-frequency atmospheric anomalies. J. Atmos. Sci., 49, 19241946, https://doi.org/10.1175/1520-0469(1992)049<1924:TMOLFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1995: Organization of storm track anomalies by recurring low-frequency circulation anomalies. J. Atmos. Sci., 52, 207226, https://doi.org/10.1175/1520-0469(1995)052<0207:OOSTAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., and F. Selten, 2009: “Modes of variability” and climate change. J. Climate, 22, 26392658, https://doi.org/10.1175/2008JCLI2517.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., and H. Teng, 2017: Tropospheric waveguide teleconnections and their seasonality. J. Atmos. Sci., 74, 15131532, https://doi.org/10.1175/JAS-D-16-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brodzik, M. J., and R. Armstrong, 2013: Northern Hemisphere EASE-Grid 2.0 Weekly Snow Cover and Sea Ice Extent, Version 4. National Snow and Ice Data Center Distributed Active Archive Center, accessed 3 January 2019, https://doi.org/10.5067/P7O0HGJLYUQU.

    • Crossref
    • Export Citation
  • Cai, M., and M. Mak, 1990: Symbiotic relation between planetary and synoptic-scale waves. J. Atmos. Sci., 47, 29532968, https://doi.org/10.1175/1520-0469(1990)047<2953:SRBPAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., and H. M. van den Dool, 1991: Low-frequency waves and traveling storm tracks. Part I: Barotropic component. J. Atmos. Sci., 48, 14201436, https://doi.org/10.1175/1520-0469(1991)048<1420:LFWATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., and H. M. van den Dool, 1992: Frequency waves and traveling storm tracks. Part II: Three-dimensional structure. J. Atmos. Sci., 49, 25062524, https://doi.org/10.1175/1520-0469(1992)049<2506:FWATST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and J. G. DeVore, 1979: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci., 36, 12051216, https://doi.org/10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and D. M. Straus, 1980: Form-drag instability, multiple equilibria and propagating planetary waves in baroclinic, orographically forced, planetary wave systems. J. Atmos. Sci., 37, 11571176, https://doi.org/10.1175/1520-0469(1980)037<1157:FDIMEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., R. Huang, and L. Zhou, 2013: Baroclinic instability of the Silk Road pattern induced by thermal damping. J. Atmos. Sci., 70, 28752893, https://doi.org/10.1175/JAS-D-12-0326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., V. Petoukhov, S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2014: Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. Proc. Natl. Acad. Sci. USA, 111, 12 33112 336, https://doi.org/10.1073/pnas.1412797111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2007: Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon. J. Climate, 20, 37513767, https://doi.org/10.1175/JCLI4221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., B. Wang, J. M. Wallace, and G. Branstator, 2011: Tropical–extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24, 18781896, https://doi.org/10.1175/2011JCLI3621.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1994: An Introduction to the Bootstrap. Chapman and Hall, 456 pp.

    • Crossref
    • Export Citation
  • Enomoto, T., 2004: Interannual variability of the Bonin high associated with the propagation of Rossby waves along the Asian jet. J. Meteor. Soc. Japan, 82, 10191034, https://doi.org/10.2151/jmsj.2004.1019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, https://doi.org/10.1256/qj.01.211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. Knight, H. W. Linderholm, D. Fereday, S. Ineson, and J. W. Hurrell, 2009: The summer North Atlantic Oscillation: Past, present, and future. J. Climate, 22, 10821103, https://doi.org/10.1175/2008JCLI2459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukutomi, Y., H. Igarashi, K. Masuda, and T. Yasunari, 2003: Interannual variability of summer water balance components in three major river basins of northern Eurasia. J. Hydrometeor., 4, 283296, https://doi.org/10.1175/1525-7541(2003)4<283:IVOSWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geisler, J. E., M. L. Blackmon, G. T. Bates, and S. Muñoz, 1985: Sensitivity of January climate response to the magnitude and position of equatorial Pacific sea surface temperature anomalies. J. Atmos. Sci., 42, 10371049, https://doi.org/10.1175/1520-0469(1985)042<1037:SOJCRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., S. W. Lyons, and S. Nigam, 1989: Transients and the extratropical response to El Niño. J. Atmos. Sci., 46, 163174, https://doi.org/10.1175/1520-0469(1989)046<0163:TATERT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirota, N., and M. Takahashi, 2012: A tripolar pattern as an internal mode of the East Asian summer monsoon. Climate Dyn., 39, 22192238, https://doi.org/10.1007/s00382-012-1416-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., 1981: A rotated principal component analysis of the interannual variability of the Northern Hemisphere 500 mb height field. Mon. Wea. Rev., 109, 20802092, https://doi.org/10.1175/1520-0493(1981)109<2080:ARPCAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038,1179:TSLROA.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., A. J. Simmons, and D. G. Andrews, 1977: Energy dispersion in a barotropic atmosphere. Quart. J. Roy. Meteor. Soc., 103, 553567, https://doi.org/10.1002/qj.49710343802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612, https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., and S.-H. Lin, 1992: Global teleconnections in the 250-mb streamfunction field during the Northern Hemisphere winter. Mon. Wea. Rev., 120, 11691190, https://doi.org/10.1175/1520-0493(1992)120<1169:GTITMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, R. Wu, and L. Wang, 2018: Structure and dynamics of a wave train along the wintertime Asian jet and its impact on East Asian climate. Climate Dyn., 51, 41234137, https://doi.org/10.1007/s00382-017-3674-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., J. Chen, L. Wang, and Z. Lin, 2012: Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system. Adv. Atmos. Sci., 29, 910942, https://doi.org/10.1007/s00376-012-2015-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illari, L., 1984: A diagnostic study of the potential vorticity in a warm blocking anticyclone. J. Atmos. Sci., 41, 35183526, https://doi.org/10.1175/1520-0469(1984)041<3518:ADSOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwao, K., and M. Takahashi, 2008: A precipitation seesaw mode between northeast Asia and Siberia in summer caused by Rossby waves over the Eurasian continent. J. Climate, 21, 24012419, https://doi.org/10.1175/2007JCLI1949.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwasaki, H., and T. Nii, 2006: The break in the Mongolian rainy season and its relation to the stationary Rossby wave along the Asian jet. J. Climate, 19, 33943405, https://doi.org/10.1175/JCLI3806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., and B. J. Hoskins, 1982: Three dimensional propagation of planetary waves. J. Meteor. Soc. Japan, 60, 109123, https://doi.org/10.2151/jmsj1965.60.1_109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodama, Y.-M., 1997: Airmass transformation of the Yamase air-flow in the summer of 1993. J. Meteor. Soc. Japan, 75, 737751, https://doi.org/10.2151/jmsj1965.75.3_737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornhuber, K., V. Petoukhov, S. Petri, S. Rahmstorf, and D. Coumou, 2017: Evidence for wave resonance as a key mechanism for generating high-amplitude quasi-stationary waves in boreal summer. Climate Dyn., 49, 19611979, https://doi.org/10.1007/s00382-016-3399-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 20092030, https://doi.org/10.1256/qj.05.204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2010: Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific–Japan pattern. J. Climate, 23, 50855108, https://doi.org/10.1175/2010JCLI3413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., H. Nakamura, M. Watanabe, and M. Kimoto, 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Japan, 87, 561580, https://doi.org/10.2151/jmsj.87.561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., and M. Sugi, 2001: Baiu rainfall variability and associated monsoon teleconnections. J. Meteor. Soc. Japan, 79, 851860, https://doi.org/10.2151/jmsj.79.851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743, https://doi.org/10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and E. O. Holopainen, 1984: Transient eddy forcing of the time-mean flow as identified by geopotential tendencies. J. Atmos. Sci., 41, 313328, https://doi.org/10.1175/1520-0469(1984)041<0313:TEFOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 1991: Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks. J. Atmos. Sci., 48, 25892613, https://doi.org/10.1175/1520-0469(1991)048<2589:VOTBAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, Z., 2014: Intercomparison of the impacts of four summer teleconnections over Eurasia on East Asian rainfall. Adv. Atmos. Sci., 31, 13661376, https://doi.org/10.1007/s00376-014-3171-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. Y., L. Wang, W. Zhou, and W. Chen, 2014: Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies. Climate Dyn., 42, 28172839, https://doi.org/10.1007/s00382-014-2163-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R.-Y., J.-H. Oh, and B.-J. Kim, 2002: A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus, 54A, 4455, https://doi.org/10.3402/tellusa.v54i1.12122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., S. Rahmstorf, K. Kornhuber, B. A. Steinman, S. K. Miller, and D. Coumou, 2017: Influence of anthropogenic climate change on planetary wave resonance and extreme weather events. Sci. Rep., 7, 45242, https://doi.org/10.1038/srep45242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manola, I., F. Selten, H. Vries, and W. Hazeleger, 2013: “Waveguidability” of idealized jets. J. Geophys. Res. Atmos., 118, 10 43210 440, https://doi.org/10.1002/jgrd.50758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullen, S. L., 1987: Transient eddy forcing of blocking flows. J. Atmos. Sci., 44, 322, https://doi.org/10.1175/1520-0469(1987)044<0003:TEFOBF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and T. Fukamachi, 2004: Evolution and dynamics of summertime blocking over the Far East and the associated surface Okhotsk high. Quart. J. Roy. Meteor. Soc., 130, 12131233, https://doi.org/10.1256/qj.03.101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naoe, H., and Y. Matsuda, 1998: Rossby wave propagation and nonlinear effects in zonally-varying basic flows. J. Meteor. Soc. Japan, 76, 385402, https://doi.org/10.2151/jmsj1965.76.3_385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naoe, H., and Y. Matsuda, 2002: Rossby wave propagation and blocking formation in realistic basic flows. J. Meteor. Soc. Japan, 80, 717731, https://doi.org/10.2151/jmsj.80.717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naoe, H., T. Fukamachi, and H. Nakamura, 1997: Rossby wave propagation in idealized and realistic zonally varying flows. J. Meteor. Soc. Japan, 75, 687700, https://doi.org/10.2151/jmsj1965.75.3_687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., and H. Mizuno, 1985a: Anomalous cold spell in summer over northeastern Japan caused by northeasterly wind from polar maritime airmass. Part 1. EOF analysis of temperature variation in relation to the large-scale situation causing the cold summer. J. Meteor. Soc. Japan, 63, 845857, https://doi.org/10.2151/jmsj1965.63.5_845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., and H. Mizuno, 1985b: Anomalously cold spell in summer over northeastern Japan caused by northeasterly wind from polar maritime airmass: Part 2. Structure of the northeasterly flow from polar maritime airmass. J. Meteor. Soc. Japan, 63, 859871, https://doi.org/10.2151/jmsj1965.63.5_859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogi, M., Y. Tachibana, and K. Yamazaki, 2004: The connectivity of the winter North Atlantic Oscillation (NAO) and the summer Okhotsk high. J. Meteor. Soc. Japan, 82, 905913, https://doi.org/10.2151/jmsj.2004.905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2013: Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc. Natl. Acad. Sci. USA, 110, 53365341, https://doi.org/10.1073/pnas.1222000110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., and W. Metz, 1989: Three-dimensional linear instability of persistent anomalous large-scale flows. J. Atmos. Sci., 46, 27832801, https://doi.org/10.1175/1520-0469(1989)046<2783:TDLIOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., and W. Metz, 1990: Transient-eddy feedbacks derived from linear theory and observations. J. Atmos. Sci., 47, 27432764, https://doi.org/10.1175/1520-0469(1990)047<2743:TEFDFL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saeed, S., N. Van Lipzig, W. A. Müller, F. Saeed, and D. Zanchettin, 2014: Influence of the circumglobal wave-train on European summer precipitation. Climate Dyn., 43, 503515, https://doi.org/10.1007/s00382-013-1871-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, N., and M. Takahashi, 2006: Dynamical processes related to the appearance of quasi-stationary waves on the subtropical jet in the midsummer Northern Hemisphere. J. Climate, 19, 15311544, https://doi.org/10.1175/JCLI3697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, N., and M. Takahashi, 2007: Dynamical processes related to the appearance of the Okhotsk high during early midsummer. J. Climate, 20, 49824994, https://doi.org/10.1175/JCLI4285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeder, M., S. S. Wang, R. R. Gillies, and H. Hsu, 2017: Extracting the tropospheric short-wave influences on subseasonal prediction of precipitation in the United States using CFSv2. Climate Dyn., 48, 39673974, https://doi.org/10.1007/s00382-016-3314-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2014: Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Climate Change, 4, 704709, https://doi.org/10.1038/nclimate2271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., and J. M. Wallace, 1983: Numerical simulation of the atmospheric response to equatorial Pacific sea surface temperature anomalies. J. Atmos. Sci., 40, 16131630, https://doi.org/10.1175/1520-0469(1983)040<1613:NSOTAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 1983: The propagation of eddies in diffluent jetstreams: Eddy vorticity forcing of ‘blocking’ flow fields. Quart. J. Roy. Meteor. Soc., 109, 737761, https://doi.org/10.1002/qj.49710946204.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., J. M. Wallace, and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 13631392, https://doi.org/10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, L., L. Wang, W. Chen, and Y. Zhang, 2016: Intraseasonal variation of the strength of the East Asian trough and its climatic impacts in boreal winter. J. Climate, 29, 25572577, https://doi.org/10.1175/JCLI-D-14-00834.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., G. Branstator, H. Wang, G. A. Meehl, and W. M. Washington, 2013: Probability of US heat waves affected by a subseasonal planetary wave pattern. Nat. Geosci., 6, 10561061, https://doi.org/10.1038/ngeo1988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terao, T., 1998: Barotropic disturbances on intraseasonal time scales observed in the midlatitudes over the Eurasian continent during the northern summer. J. Meteor. Soc. Japan, 76, 419436, https://doi.org/10.2151/jmsj1965.76.3_419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakabayashi, S., and R. Kawamura, 2004: Extraction of major teleconnection patterns possibly associated with the anomalous summer climate in Japan. J. Meteor. Soc. Japan, 82, 15771588, https://doi.org/10.2151/jmsj.82.1577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., S. Schubert, R. Koster, Y.-G. Ham, and M. Suarez, 2014: On the role of SST forcing in the 2011 and 2012 extreme U.S. heat and drought: A study in contrasts. J. Hydrometeor., 15, 12551273, https://doi.org/10.1175/JHM-D-13-069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., P. Xu, W. Chen, and Y. Liu, 2017: Interdecadal variations of the Silk Road pattern. J. Climate, 30, 99159932, https://doi.org/10.1175/JCLI-D-17-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., Y. Y. Liu, Y. Zhang, W. Chen, and S. Chen, 2018: Time-varying structure of the wintertime Eurasian pattern: Role of the North Atlantic sea surface temperature and atmospheric mean flow. Climate Dyn., https://doi.org/10.1007/s00382-018-4261-9.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., R. E. Davies, and R. R. Gillies, 2013: Identification of extreme precipitation threat across midlatitude regions based on short-wave circulations. J. Geophys. Res. Atmos., 118, 11 05911 074, https://doi.org/10.1002/jgrd.50841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 1992: Effects of blocking anticyclones in Eurasia in the rainy season (meiyu/baiu season). J. Meteor. Soc. Japan, 70, 929951, https://doi.org/10.2151/jmsj1965.70.5_929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and T. Yasunari, 1994: A diagnostic analysis of the wave train propagating from high-latitudes to low-latitudes in early summer. J. Meteor. Soc. Japan, 72, 269279, https://doi.org/10.2151/jmsj1965.72.2_269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., 2002: A mid-latitude Asian circulation anomaly pattern in boreal summer and its connection with the Indian and East Asian summer monsoons. Int. J. Climatol., 22, 18791895, https://doi.org/10.1002/joc.845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, R., Y. Tao, and J. Cao, 2010: A mechanism for the interannual variation of the early summer East Asia–Pacific teleconnection wave train. Acta Meteor. Sin., 4, 452458.

    • Search Google Scholar
    • Export Citation
  • Yim, S.-Y., B. Wang, J. Liu, and Z. Wu, 2014: A comparison of regional monsoon variability using monsoon indices. Climate Dyn., 43, 14231437, https://doi.org/10.1007/s00382-013-1956-9.

    • Crossref
    • Search Google Scholar
    • Export Citation