Reexamination of the Late Pliocene Climate over China Using a 25-km Resolution General Circulation Model

Qing Yan Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, and Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China

Search for other papers by Qing Yan in
Current site
Google Scholar
PubMed
Close
,
Ting Wei State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Ting Wei in
Current site
Google Scholar
PubMed
Close
, and
Zhongshi Zhang Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China, and Uni Research Climate, Bjerknes Center for Climate Research, Bergen, Norway

Search for other papers by Zhongshi Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Simulations of past warm climate provide an opportunity to better understand how the climate system may respond to increased greenhouse gas emissions. Using the ~25-km-resolution Community Atmosphere Model, version 4 (CAM4), we examine climate change over China in the Late Pliocene warm period (3.264–3.025 Ma) and further explore the influences of different sea surface temperature (SST) forcings and model horizontal resolutions. Initial evaluation shows that the high-resolution CAM4 performs well in capturing the climatological distribution of present-day temperature, precipitation, and low-level monsoon circulations over China. Based on the standard Pliocene Research, Interpretation and Synoptic Mapping (version 4; PRISM4) boundary conditions, CAM4 predicts an increase of annual mean temperature by ~0.5°C over China in the Late Pliocene relative to the preindustrial era, with the greatest warming in northwest China but cooling in southwest China. Enhanced annual mean precipitation is observed in the Late Pliocene over most of China except for northwest China where precipitation is decreased. The East Asian summer (winter) monsoon is intensified (weakened) in the Late Pliocene as suggested by geological evidence, which is attributed to the enhanced (reduced) land–sea thermal contrast. The East Asian monsoon domain exhibits a northwestward expansion in the Late Pliocene, especially over the Tibetan Plateau. Additionally, our results indicate that the modeled climate change is sensitive to the Late Pliocene SST forcings and model resolution. Particularly, different SST forcings [PRISM4-based vs Pliocene Model Intercomparison Project (PlioMIP)-based SSTs] affect the modeled phase change of summer monsoon and the associated precipitation change, while model resolution (~25 vs 400 km) mainly impacts precipitation change.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0378.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qing Yan, yanqing@mail.iap.ac.cn

Abstract

Simulations of past warm climate provide an opportunity to better understand how the climate system may respond to increased greenhouse gas emissions. Using the ~25-km-resolution Community Atmosphere Model, version 4 (CAM4), we examine climate change over China in the Late Pliocene warm period (3.264–3.025 Ma) and further explore the influences of different sea surface temperature (SST) forcings and model horizontal resolutions. Initial evaluation shows that the high-resolution CAM4 performs well in capturing the climatological distribution of present-day temperature, precipitation, and low-level monsoon circulations over China. Based on the standard Pliocene Research, Interpretation and Synoptic Mapping (version 4; PRISM4) boundary conditions, CAM4 predicts an increase of annual mean temperature by ~0.5°C over China in the Late Pliocene relative to the preindustrial era, with the greatest warming in northwest China but cooling in southwest China. Enhanced annual mean precipitation is observed in the Late Pliocene over most of China except for northwest China where precipitation is decreased. The East Asian summer (winter) monsoon is intensified (weakened) in the Late Pliocene as suggested by geological evidence, which is attributed to the enhanced (reduced) land–sea thermal contrast. The East Asian monsoon domain exhibits a northwestward expansion in the Late Pliocene, especially over the Tibetan Plateau. Additionally, our results indicate that the modeled climate change is sensitive to the Late Pliocene SST forcings and model resolution. Particularly, different SST forcings [PRISM4-based vs Pliocene Model Intercomparison Project (PlioMIP)-based SSTs] affect the modeled phase change of summer monsoon and the associated precipitation change, while model resolution (~25 vs 400 km) mainly impacts precipitation change.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0378.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qing Yan, yanqing@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 4.50 MB)
Save
  • Cai, M. T., X. M. Fang, F. L. Wu, Y. F. Miao, and E. Appel, 2012: Pliocene–Pleistocene stepwise drying of central Asia: Evidence from paleomagnetism and sporopollen record of the deep borehole SG-3 in the western Qaidam Basin, NE Tibetan Plateau. Global Planet. Change, 94–95, 7281, https://doi.org/10.1016/j.gloplacha.2012.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., and P. Molnar, 2001: Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. Nature, 411, 157162, https://doi.org/10.1038/35075500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and J. Sun, 2013: Projected change in East Asian summer monsoon precipitation under RCP scenario. Meteor. Atmos. Phys., 121, 5577, https://doi.org/10.1007/s00703-013-0257-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., J. Sun, and X. Chen, 2014: Projection and uncertainty analysis of global precipitation-related extremes using CMIP5 models. Int. J. Climatol., 34, 27302748, https://doi.org/10.1002/joc.3871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1217–1308.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, https://doi.org/10.1007/s00703-005-0125-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, A., and Coauthors, 2015: Using results from the PlioMIP ensemble to investigate the Greenland Ice Sheet during the warm Pliocene. Climate Past, 11, 403424, https://doi.org/10.5194/cp-11-403-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowsett, H., T. M. Cronin, R. Z. Poore, R. S. Thompson, R. C. Whatley, and A. M. Wood, 1992: Micropaleontological evidence for increased meridional heat transport in the North Atlantic Ocean during the Pliocene. Science, 258, 11331135, https://doi.org/10.1126/science.258.5085.1133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowsett, H., and Coauthors, 1994: Joint investigations of the Middle Pliocene climate I: PRISM paleoenvironmental reconstructions. Global Planet. Change, 9, 169195, https://doi.org/10.1016/0921-8181(94)90015-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowsett, H., J. A. Barron, R. Z. Poore, R. S. Thompson, T. M. Cronin, S. E. Ishman, and D. A. Willard, 1999: Middle Pliocene paleoenvironmental reconstruction: PRISM2. USGS Open-File Rep. 99–535, https://doi.org/10.3133/ofr99535.

    • Crossref
    • Export Citation
  • Dowsett, H., M. M. Robinson, and K. M. Foley, 2009: Pliocene three-dimensional global ocean temperature reconstruction. Climate Past, 5, 769783, https://doi.org/10.5194/cp-5-769-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowsett, H., and Coauthors, 2010: The PRISM3D paleoenvironmental reconstruction. Stratigraphy, 7, 123139.

  • Dowsett, H., and Coauthors, 2012: Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models. Nat. Climate Change, 2, 365371, https://doi.org/10.1038/nclimate1455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowsett, H., and Coauthors, 2013: Sea surface temperature of the mid-Piacenzian ocean: A data–model comparison. Sci. Rep., 3, 2013, https://doi.org/10.1038/srep02013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowsett, H., and Coauthors, 2016: The PRISM4 (mid-Piacenzian) palaeoenvironmental reconstruction. Climate Past, 12, 15191538, https://doi.org/10.5194/cp-12-1519-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eronen, J. T., K. Puolamaki, L. Liu, K. Lintulaakso, J. Damuth, C. Janis, and M. Fortelius, 2010: Precipitation and large herbivorous mammals II: Application to fossil data. Evol. Ecol. Res., 12, 235248, http://www.evolutionary-ecology.com/abstracts/v12/2539.html.

    • Search Google Scholar
    • Export Citation
  • Gao, X., Y. Xu, Z. Zhao, S. J. Pal, and F. Giorgi, 2006: On the role of resolution and topography in the simulation of East Asia precipitation. Theor. Appl. Climatol., 86, 173185, https://doi.org/10.1007/s00704-005-0214-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, X., Y. Shi, R. Song, F. Giorgi, Y. Wang, and D. Zhang, 2008: Reduction of future monsoon precipitation over China: Comparison between a high resolution RCM simulation and the driving GCM. Meteor. Atmos. Phys., 100, 7386, https://doi.org/10.1007/s00703-008-0296-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, X., Y. Shi, and F. Giorgi, 2011: A high resolution simulation of climate change over China. Sci. China Earth Sci., 54, 462472, https://doi.org/10.1007/s11430-010-4035-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., W. S. Fyfe, F. J. Longstaffe, H. C. Palmer, F. H. Yan, and X. S. Mai, 1997: Pliocene-Pleistocene climatic change recorded in fluviolacustrine sediments in central China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 135, 2739, https://doi.org/10.1016/S0031-0182(97)00019-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hao, H., D. K. Ferguson, H. Chang, and C. S. Li, 2012: Vegetation and climate of the Lop Nur area, China, during the past 7 million years. Climatic Change, 113, 323338, https://doi.org/10.1007/s10584-011-0347-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, A. M., P. J. Valdes, and B. W. Sellwood, 2000: Global scale palaeoclimate reconstruction of the middle Pliocene climate using the UKMO GCM: Initial results. Global Planet. Change, 25, 239256, https://doi.org/10.1016/S0921-8181(00)00028-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, A. M., and Coauthors, 2010: Pliocene Model Intercomparison Project (PlioMIP): Experimental design and boundary conditions (Experiment 1). Geosci. Model Dev., 3, 227242, https://doi.org/10.5194/gmd-3-227-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, A. M., H. J. Dowsett, M. M. Robinson, D. K. Stoll, A. M. Dolan, D. L. Lunt, B. Otto-Bliesner, and M. A. Chandler, 2011: Pliocene Model Intercomparison Project (PlioMIP): Experimental design and boundary conditions (Experiment 2). Geosci. Model Dev., 4, 571577, https://doi.org/10.5194/gmd-4-571-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, A. M., and Coauthors, 2013: Large-scale features of Pliocene climate: Results from the Pliocene Model Intercomparison Project. Climate Past, 9, 191209, https://doi.org/10.5194/cp-9-191-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, A. M., H. J. Dowsett, and A. M. Dolan, 2016a: Integrating geological archives and climate models for the mid-Pliocene warm period. Nat. Commun., 7, 10646, https://doi.org/10.1038/ncomms10646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, A. M., and Coauthors, 2016b: The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: Scientific objectives and experimental design. Climate Past, 12, 663675, https://doi.org/10.5194/cp-12-663-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, S., and H. Wang, 2012: An integrated East Asian winter monsoon index and its interannual variability (in Chinese). Chin. J. Atmos. Sci., 36, 523538.

    • Search Google Scholar
    • Export Citation
  • Hickler, T., and Coauthors, 2012: Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species–based dynamic vegetation model. Global Ecol. Biogeogr., 21, 5063, https://doi.org/10.1111/j.1466-8238.2010.00613.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, D., and Coauthors, 2014: Evaluating the dominant components of warming in Pliocene climate simulations. Climate Past, 10, 7990, https://doi.org/10.5194/cp-10-79-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huybrechts, P., H. Goelzer, I. Janssens, E. Driesschaert, T. Fichefet, H. Goosse, and M.-F. Loutre, 2011: Response of the Greenland and Antarctic ice sheets to multi-millennial greenhouse warming in the Earth system model of intermediate complexity LOVECLIM. Surv. Geophys., 32, 397416, https://doi.org/10.1007/s10712-011-9131-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, S., J. Nie, D. O. Breecker, Z. Luo, and Y. Song, 2017: Intensified aridity in northern China during the middle Piacenzian warm period. J. Asian Earth Sci., 147, 222225, https://doi.org/10.1016/j.jseaes.2017.07.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, C. H., L. Yu, N. Du, and Z. Kong, 1989: Changes of vegetation and climate in Qian An County, Jilin Province since late Tertiary (in Chinese). Dili Kexue, 9, 274282.

    • Search Google Scholar
    • Export Citation
  • Jiang, D., and Z. P. Tian, 2013: East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models. Chin. Sci. Bull., 58, 14271435, https://doi.org/10.1007/s11434-012-5533-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, D., H. Wang, Z. Ding, X. Lang, and H. Drange, 2005: Modeling the middle Pliocene climate with a global atmospheric general circulation model. J. Geophys. Res., 110, D14107, https://doi.org/10.1029/2004JD005639.

    • Search Google Scholar
    • Export Citation
  • Jiang, H. C., and Z. L. Ding, 2008: A 20 Ma pollen record of East-Asian summer monsoon evolution from Guyuan, Ningxia, China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 265, 3038, https://doi.org/10.1016/j.palaeo.2008.04.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karas, C., D. Nürnberg, A. Bahr, J. Groeneveld, J. O. Herrle, R. Tiedemann, and P. B. deMenocal, 2017: Pliocene oceanic seaways and global climate. Sci. Rep., 7, 39842, https://doi.org/10.1038/srep39842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kou, X.-Y., D. K. Ferguson, J. X. Xu, Y. F. Wang, and C.-S. Li, 2006: The reconstruction of paleovegetation and paleoclimate in the Late Pliocene of west Yunnan, China. Climatic Change, 77, 431448, https://doi.org/10.1007/s10584-005-9039-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J. Y., and B. Wang, 2014: Future change of global monsoon in the CMIP5. Climate Dyn., 42, 101119, https://doi.org/10.1007/s00382-012-1564-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., R. Yu, W. Yuan, H. Chen, W. Sun, and Y. Zhang, 2015: Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions. J. Adv. Model. Earth Syst., 7, 774790, https://doi.org/10.1002/2014MS000414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X. Q., C. S. Li, H. Y. Lu, J. R. Dodson, and Y. F. Wang, 2004: Paleovegetation and paleoclimate in middle-late Pliocene, Shanxi, central China. Palaeogeogr. Palaeoclimataol. Palaeoecol., 210, 5766, https://doi.org/10.1016/j.palaeo.2004.03.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G. W., E. B. Leopold, Y. Liu, W. M. Wang, Z. Y. Yu, and G. B. Tong, 2002: Palynological record of Pliocene climate events in North China. Rev. Palaeobot. Palynol., 119, 335340, https://doi.org/10.1016/S0034-6667(01)00125-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., and B. Dong, 2001: Westward extension of North Pacific subtropical high in summer. J. Meteor. Soc. Japan, 79, 12291241, https://doi.org/10.2151/jmsj.79.1229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lunt, D. J., A. M. Haywood, G. A. Schmidt, U. Salzmann, P. J. Valdes, and H. J. Dowsett, 2010: Earth system sensitivity inferred from Pliocene modelling and data. Nat. Geosci., 3, 6064, https://doi.org/10.1038/ngeo706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Y., X. Fang, J. Li, F. Wu, and J. Zhang, 2005: The vegetation and climate change during Neocene and Early Quaternary in Jiuxi Basin, China. Sci. China, 48D, 676688, https://doi.org/10.1360/03yd0110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Man, W., T. Zhou, and J. H. Jungclaus, 2012: Simulation of the East Asian summer monsoon during the last millennium with the MPI Earth system model. J. Climate, 25, 78527866, https://doi.org/10.1175/JCLI-D-11-00462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naish, T., and Coauthors, 2009: Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature, 458, 322328, https://doi.org/10.1038/nature07867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note NCAR/TN-486-STR, 268 pp.

  • Nie, J., J. W. King, and X. Fang, 2007: Enhancement mechanisms of magnetic susceptibility in the Chinese red-clay sequence. Geophys. Res. Lett., 34, L19705, https://doi.org/10.1029/2007GL031430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J., T. Stevens, Y. Song, J. W. King, R. Zhang, S. Ji, L. S. Gong, and D. Cares, 2014: Pacific freshening drives Pliocene cooling and Asian monsoon intensification. Sci. Rep., 4, 5474, https://doi.org/10.1038/srep05474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J., and Coauthors, 2017: Dominant 100,000-year precipitation cyclicity in a late Miocene lake from northeast Tibet. Sci. Adv., 3, e1600762, https://doi.org/10.1126/sciadv.1600762.

    • Search Google Scholar
    • Export Citation
  • Nie, J., A. Pullen, C. N. Garzione, W. Peng, and Z. Wang, 2018: Pre-Quaternary decoupling between Asian aridification and high dust accumulation rates. Sci. Adv., 4, eaao6977, https://doi.org/10.1126/sciadv.aao6977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Brien, C. L., G. L. Foster, M. A. Martínez-Botí, R. Abell, J. W. B. Rae, and R. D. Pancost, 2014: High sea surface temperatures in tropical warm pools during the Pliocene. Nat. Geosci., 7, 606611, https://doi.org/10.1038/ngeo2194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pang, Q., D. Zhai, Z. Zhao, and Z. Zhang, 2015: Late Cenozoic micropalaeontology in the Nihewan Basin and its implications for environmental evolution (in Chinese). Acta Geol. Sin., 89, 817842.

    • Search Google Scholar
    • Export Citation
  • Peng, W., J. Nie, Z. Wang, X. Qiang, E. Garzanti, K. Pfaff, Y. Song, and T. Stevens, 2018: A major change in precipitation gradient on the Chinese Loess Plateau at the Pliocene-Quaternary boundary. J. Asian Earth Sci., 155, 134138, https://doi.org/10.1016/j.jseaes.2017.10.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rea, D. K., H. Snoeckx, and L. H. Joseph, 1998: Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the Northern Hemisphere. Paleoceanography, 13, 215224, https://doi.org/10.1029/98PA00123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salzmann, U., A. M. Haywood, D. Lunt, P. Valdes, and D. Hill, 2008: A new global biome reconstruction and data–model comparison for the middle Pliocene. Global Ecol. Biogeogr., 17, 432447, https://doi.org/10.1111/j.1466-8238.2008.00381.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salzmann, U., and Coauthors, 2013: Challenges in quantifying Pliocene terrestrial warming revealed by data–model discord. Nat. Climate Change, 3, 969974, https://doi.org/10.1038/nclimate2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., 1985: Analysis of the “spinup” of a general circulation model. J. Geophys. Res., 90, 56375660, https://doi.org/10.1029/JD090iD03p05637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, S., B. Parkash, A. K. Awasthi, and T. Singh, 2012: Palaeoprecipitation record using O-isotope studies of the Himalayan foreland basin sediments, NW India. Palaeogeogr. Palaeoclimatol. Palaeoecol., 331–332, 3949, https://doi.org/10.1016/j.palaeo.2012.02.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, T., F. M. B. Jacques, R. A. Spicer, Y. S. Liu, Y. J. Huang, Y. W. Xing, and Z. K. Zhou, 2013: Post-Pliocene establishment of the present monsoonal climate in SW China: Evidence from the late Pliocene Longmen megaflora. Climate Past, 9, 19111920, https://doi.org/10.5194/cp-9-1911-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B.-N., J.-Y. Wu, Y.-S. Liu, S.-T. Ding, X.-C. Li, S.-P. Xie, D.-F. Yan, and Z.-C. Lin, 2011: Reconstructing Neogene vegetation and climates to infer tectonic uplift in western Yunnan, China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 304, 328336, https://doi.org/10.1016/j.palaeo.2010.09.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., T. Zhou, G. Ramstein, C. Contoux, and Z. Zhang, 2016: Drivers and mechanisms for enhanced summer monsoon precipitation over East Asia during the mid-Pliocene in the IPSL-CM5A. Climate Dyn., 46, 14371457, https://doi.org/10.1007/s00382-015-2656-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, D., Y. Guo, and W. Dong, 2015: Future changes and uncertainties in temperature and precipitation over China based on CMIP5 models. Adv. Atmos. Sci., 32, 487496, https://doi.org/10.1007/s00376-014-4102-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Z. P., and D. B. Jiang, 2015: Mid-Holocene and last glacial maximum changes in monsoon area and precipitation over China (in Chinese). Chin. Sci. Bull., 60, 400410, https://doi.org/10.1360/N972014-00718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, P. D., and D. M. Lawler, 1981: Rainfall seasonality: Description, spatial patterns and changes through time. Weather, 36, 201208, https://doi.org/10.1002/j.1477-8696.1981.tb05400.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., 2006: The Asian Monsoon. Springer, 787 pp.

  • Wang, B., and Q. Ding, 2006: Changes in global monsoon precipitation over the past 56 years. Geophys. Res. Lett., 33, L06711, https://doi.org/10.1029/2005GL025347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, H.-J. Kim, P. J. Webster, and S.-Y. Yim, 2012: Recent change of the global monsoon precipitation (1979–2008). Climate Dyn., 39, 11231135, https://doi.org/10.1007/s00382-011-1266-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., S. Y. Yim, J. Y. Lee, J. Liu, and K. J. Ha, 2014: Future change of Asian–Australian monsoon under RCP 4.5 anthropogenic warming scenario. Climate Dyn., 42, 83100, https://doi.org/10.1007/s00382-013-1769-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W. M., and J. W. Shu, 2004: Late Cenozoic palynofloras from Qujing Basin, Yunnan, China (in Chinese). Acta Palaeontol. Sin., 43, 254261.

    • Search Google Scholar
    • Export Citation
  • Wang, W. M., J. R. Li, J. D. Wang, and Z. J. He, 2002: Palynofloras from Pliocene balouhe formation and Pleistocene in Zhangqiu County, Shandong Province. Acta Palaeonotol. Sin., 41, 7276.

    • Search Google Scholar
    • Export Citation
  • Wu, F. L., X. Fang, Y. Ma, M. Herrmann, V. Mosbrugger, Z. An, and Y. Miao, 2007: Plio-Quaternary stepwise drying of Asia: Evidence from a 3-Ma pollen record from the Chinese Loess Plateau. Earth Planet. Sci. Lett., 257, 160169, https://doi.org/10.1016/j.epsl.2007.02.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, F. L., X. Fang, M. Herrmann, V. Mosbrugger, and Y. F. Miao, 2011: Extended drought in the interior of Central Asia since the Pliocene reconstructed from sporopollen records. Global Planet. Change, 76, 1621, https://doi.org/10.1016/j.gloplacha.2010.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., and X. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys., 56, 11021111, https://doi.org/10.6038/cjg20130406.

    • Search Google Scholar
    • Export Citation
  • Wu, N. Q., Y. P. Pei, H. Y. Lu, Z. T. Guo, F. J. Li, and T. S. Liu, 2006: Marked ecological shifts during 6.2–2.4 Ma revealed by a terrestrial molluscan record from the Chinese Red Clay Formation and implication for palaeoclimatic evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol., 233, 287299, https://doi.org/10.1016/j.palaeo.2005.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y. S., 2001: Palynoflora at late Miocene–early Pliocene from leijiahe of lingtai, Gansu Province, China (in Chinese). Acta Bot. Sin., 43, 750756.

    • Search Google Scholar
    • Export Citation
  • Xie, S., B. Sun, J. Wu, Z. Lin, D. Yan, and L. Xiao, 2012: Palaeoclimatic estimates for the Late Pliocene based on leaf physiognomy from western Yunnan, China. Turk. J. Earth Sci., 21, 251261.

    • Search Google Scholar
    • Export Citation
  • Yan, Q., Z. Zhang, and Y. Gao, 2012a: An East Asian monsoon in the mid-Pliocene. Atmos. Oceanic Sci. Lett., 5, 449454, https://doi.org/10.1080/16742834.2012.11447034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Q., Z. Zhang, H. Wang, Y. Gao, and W. Zheng, 2012b: Set-up and preliminary results of mid-Pliocene climate simulations with CAM3.1. Geosci. Model Dev., 5, 289297, https://doi.org/10.5194/gmd-5-289-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Q., Z. Zhang, H. Wang, and R. Zhang, 2014: Simulation of the Greenland ice sheet during the mid-Pliocene. Chin. Sci. Bull., 59, 201211, https://doi.org/10.1007/s11434-013-0001-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Q., Z. Zhang, and H. Wang, 2016a: Investigating uncertainty in the simulation of the Antarctic ice sheet during the mid-Piacenzian. J. Geophys. Res., 121, 15591574, https://doi.org/10.1002/2015JD023900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Q., T. Wei, R. L. Korty, J. P. Kossin, Z. Zhang, and H. Wang, 2016b: Enhanced intensity of global tropical cyclones during the mid-Pliocene warm period. Proc. Natl. Acad. Sci. USA, 113, 12 96312 967, https://doi.org/10.1073/pnas.1608950113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., Z. Ding, Y. Li, X. Wang, W. Jiang, and X. Huang, 2015: Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene. Proc. Natl. Acad. Sci. USA, 112, 13 17813 183, https://doi.org/10.1073/pnas.1504688112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., K.-M. Lau, and K.-M. Kim, 2002: Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies. J. Climate, 15, 306325, https://doi.org/10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, Y.-F., A. A. Bruch, Y. M. Cheng, V. Mosbrugger, Y.-F. Wang, and C.-S. Li, 2012: Monsoon versus uplift in southwestern China—Late Pliocene climate in Yuanmou Basin, Yunnan. PLOS ONE, 7, e37760, https://doi.org/10.1371/journal.pone.0037760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, E., H. Wang, and J. Sun, 2010: A quick report on a dynamical downscaling simulation over China using the nested model. Atmos. Ocean. Sci. Lett., 3, 325329, https://doi.org/10.1080/16742834.2010.11446886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, E., J. Sun, H. Chen, and W. Xiang, 2015: Evaluation of a high-resolution historical simulation over China: Climatology and extremes. Climate Dyn., 45, 20132031, https://doi.org/10.1007/s00382-014-2452-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and Coauthors, 2013: East Asian monsoon climate simulated in the PlioMIP. Climate Past, 9, 20852099, https://doi.org/10.5194/cp-9-2085-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., D. Jiang, and Z. Zhang, 2015: Causes of mid-Pliocene strengthened summer and weakened winter monsoons over East Asia. Adv. Atmos. Sci., 32, 10161026, https://doi.org/10.1007/s00376-014-4183-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2010: Depositional facies and paleoenviromental record of the Late Tertiary stratum of Lanzhou Area, Gansu (in Chinese). Acta Sedimentol. Sin., 28, 611619.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. G., M. Pagani, and Z. Liu, 2014: A 12-million-year temperature history of the tropical Pacific Ocean. Science, 344, 8487, https://doi.org/10.1126/science.1246172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and Q. Yan, 2012: Pre-industrial and mid-Pliocene simulations with NorESM-L: AGCM simulations. Geosci. Model Dev., 5, 10331043, https://doi.org/10.5194/gmd-5-1033-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., X. Li, Q. Yan, and R. Zhang, 2016: Impact of changes in seaways on Chinese climate during Pliocene (in Chinese). Quat. Sci., 36, 768774, https://doi.org/10.11928/j.issn.1001-7410.2016.03.25.

    • Search Google Scholar
    • Export Citation
  • Zheng, H., C. M. Powell, D. K. Rea, J. Wang, and P. Wang, 2004: Late Miocene and mid-Pliocene enhancement of the East Asian monsoon as viewed from the land and sea. Global Planet. Change, 41, 147155, https://doi.org/10.1016/j.gloplacha.2004.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., Q. H. Wen, Y. Xu, L. Song, and X. Zhang, 2014: Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J. Climate, 27, 65916611, https://doi.org/10.1175/JCLI-D-13-00761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T. J., and R. C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104,