Dynamics of Asian Summer Monsoon Response to Anthropogenic Aerosol Forcing

Hai Wang Physical Oceanography Laboratory, Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, and College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

Search for other papers by Hai Wang in
Current site
Google Scholar
PubMed
Close
,
Shang-Ping Xie Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, and Physical Oceanography Laboratory, Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Shang-Ping Xie in
Current site
Google Scholar
PubMed
Close
,
Yu Kosaka Research Center for Advanced Science and Technology, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan

Search for other papers by Yu Kosaka in
Current site
Google Scholar
PubMed
Close
,
Qinyu Liu Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, and College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

Search for other papers by Qinyu Liu in
Current site
Google Scholar
PubMed
Close
, and
Yan Du State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Yan Du in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Anthropogenic aerosols partially mask the greenhouse warming and cause the reduction in Asian summer monsoon precipitation and circulation. By decomposing the atmospheric change into the direct atmospheric response to radiative forcing and sea surface temperature (SST)-mediated change, the physical mechanisms for anthropogenic-aerosol-induced changes in the East Asian summer monsoon (EASM) and South Asian summer monsoon (SASM) are diagnosed. Using coupled and atmospheric general circulation models, this study shows that the aerosol-induced troposphere cooling over Asian land regions generates anomalous sinking motion between 20° and 40°N and weakens the EASM north of 20°N without SST change. The decreased EASM precipitation and the attendant wind changes are largely due to this direct atmospheric response to radiative forcing, although the aerosol-induced North Pacific SST cooling also contributes. The SST-mediated change dominates the aerosol-induced SASM response, with contributions from both the north–south interhemispheric SST gradient and the local SST cooling pattern over the tropical Indian Ocean. Specifically, with large meridional gradient, the zonal-mean SST cooling pattern is most important for the Asian summer monsoon response to anthropogenic aerosol forcing, resulting in a reorganization of the regional meridional atmospheric overturning circulation. While uncertainty in aerosol radiative forcing has been emphasized in the literature, our results show that the intermodel spread is as large in the SST effect on summer monsoon rainfall, calling for more research into the ocean–atmosphere coupling.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hai Wang, wanghai@ouc.edu.cn

Abstract

Anthropogenic aerosols partially mask the greenhouse warming and cause the reduction in Asian summer monsoon precipitation and circulation. By decomposing the atmospheric change into the direct atmospheric response to radiative forcing and sea surface temperature (SST)-mediated change, the physical mechanisms for anthropogenic-aerosol-induced changes in the East Asian summer monsoon (EASM) and South Asian summer monsoon (SASM) are diagnosed. Using coupled and atmospheric general circulation models, this study shows that the aerosol-induced troposphere cooling over Asian land regions generates anomalous sinking motion between 20° and 40°N and weakens the EASM north of 20°N without SST change. The decreased EASM precipitation and the attendant wind changes are largely due to this direct atmospheric response to radiative forcing, although the aerosol-induced North Pacific SST cooling also contributes. The SST-mediated change dominates the aerosol-induced SASM response, with contributions from both the north–south interhemispheric SST gradient and the local SST cooling pattern over the tropical Indian Ocean. Specifically, with large meridional gradient, the zonal-mean SST cooling pattern is most important for the Asian summer monsoon response to anthropogenic aerosol forcing, resulting in a reorganization of the regional meridional atmospheric overturning circulation. While uncertainty in aerosol radiative forcing has been emphasized in the literature, our results show that the intermodel spread is as large in the SST effect on summer monsoon rainfall, calling for more research into the ocean–atmosphere coupling.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hai Wang, wanghai@ouc.edu.cn
Save
  • Allen, R. J., A. T. Evan, and B. B. Booth, 2015: Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late twentieth century. J. Climate, 28, 82198246, https://doi.org/10.1175/JCLI-D-15-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, https://doi.org/10.1175/JCLI-3223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Babu, S. S., S. K. Satheesh, and K. K. Moorthy, 2002: Aerosol radiative forcing due to enhanced black carbon at an urban site in India. Geophys. Res. Lett., 29, 1880, https://doi.org/10.1029/2002GL015826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, Z., Z. Wen, and R. Wu, 2009: Variability of aerosol optical depth over east Asia and its possible impacts. J. Geophys. Res., 114, D05203, https://doi.org/10.1029/2008JD010603.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., 2013: Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. Atmos., 118, 16131623, https://doi.org/10.1002/jgrd.50206.

  • Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502505, https://doi.org/10.1126/science.1204994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2013: Earlier onset of the Indian monsoon in the late twentieth century: The role of anthropogenic aerosols. Geophys. Res. Lett., 40, 37153720, https://doi.org/10.1002/grl.50719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., Y. Ming, V. Ramaswamy, M. D. Schwarzkopf, and V. Naik, 2014: Contribution of local and remote anthropogenic aerosols to the twentieth century weakening of the South Asian monsoon. Geophys. Res. Lett., 41, 680687, https://doi.org/10.1002/2013GL058183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, https://doi.org/10.1038/nature10946; Corrigendum, 485, 534, https://doi.org/10.1038/nature11138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657, https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter07_FINAL-1.pdf.

  • Chang, C.-Y., J. C. H. Chiang, M. F. Wehner, A. R. Friedman, and R. Ruedy, 2011: Sulfate aerosol control of tropical Atlantic climate over the twentieth century. J. Climate, 24, 25402555, https://doi.org/10.1175/2010JCLI4065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-P., I.-J. Chen, and I.-C. Tsai, 2016: Dynamic feedback of aerosol effects on the East Asian summer monsoon. J. Climate, 29, 61376149, https://doi.org/10.1175/JCLI-D-15-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., 2006: Variation of the Asian monsoon water vapor budget: Interaction with the global-scale modes. The Asian Monsoon, B. Wang, Ed., Springer/Praxis Publishing, 417–457, https://doi.org/10.1007/3-540-37722-0.

    • Crossref
    • Export Citation
  • Chiang, J. C. H., and A. R. Friedman, 2012: Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci., 40, 383–412, https://doi.org/10.1146/annurev-earth-042711-105545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136, https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter12_FINAL.pdf.

  • Collins, M., and Coauthors, 2018: Challenges and opportunities for improved understanding of regional climate dynamics. Nat. Climate Change, 8, 101108, https://doi.org/10.1038/s41558-017-0059-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., and R. Sutton, 2015: Dominant role of greenhouse-gas forcing in the recovery of Sahel rainfall. Nat. Climate Change, 5, 757760, https://doi.org/10.1038/nclimate2664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., R. T. Sutton, E. J. Highwood, and L. J. Wilcox, 2016: Preferred response of the East Asian summer monsoon to local and non-local anthropogenic sulphur dioxide emissions. Climate Dyn., 46, 17331751, https://doi.org/10.1007/s00382-015-2671-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component of the GFDL global coupled model CM3. J. Climate, 24, 34843519, https://doi.org/10.1175/2011JCLI3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganguly, D., P. J. Rasch, H. Wang, and J.-H. Yoon, 2012a: Climate response of the South Asian monsoon system to anthropogenic aerosols. J. Geophys. Res., 117, D13209, https://doi.org/10.1029/2012JD017508.

    • Search Google Scholar
    • Export Citation
  • Ganguly, D., P. J. Rasch, H. Wang, and J.-H. Yoon, 2012b: Fast and slow responses of the South Asian monsoon system to anthropogenic aerosols. Geophys. Res. Lett., 39, L18804, https://doi.org/10.1029/2012GL053043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., and S.-W. Wang, 2000: Severe summer rainfall in China associated with enhanced global warming. Climate Res., 16, 5159, https://doi.org/10.3354/cr016051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104, https://doi.org/10.1029/2005JD005776.

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1; Corrigendum, 24, 1559–1560, https://doi.org/10.1175/2010JCLI4045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., T. L. Delworth, J. Lu, K. L. Findell, and T. R. Knutson, 2005: Simulation of Sahel drought in the 20th and 21st centuries. Proc. Natl. Acad. Sci. USA, 102, 17 89117 896, https://doi.org/10.1073/pnas.0509057102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., S.-P. Xie, K. Hu, G. Huang, and R. Huang, 2013: Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci., 6, 357361, https://doi.org/10.1038/ngeo1792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., D. M. W. Frierson, and S. M. Kang, 2013: Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett., 40, 28452850, https://doi.org/10.1002/grl.50502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, and S.-P. Xie, 2014: Contrasting the tropical responses to zonally asymmetric extratropical and tropical thermal forcing. Climate Dyn., 42, 20332043, https://doi.org/10.1007/s00382-013-1863-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., D. Tanré, and O. Boucher, 2002: A satellite view of aerosols in the climate system. Nature, 419, 215223, https://doi.org/10.1038/nature01091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 70177039, https://doi.org/10.5194/acp-10-7017-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and K.-M. Kim, 2006: Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett., 33, L21810, https://doi.org/10.1029/2006GL027546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and K.-M. Kim, 2017: Competing influences of greenhouse warming and aerosols on Asian summer monsoon circulation and rainfall. Asia-Pac. J. Atmos. Sci., 53, 181194, https://doi.org/10.1007/s13143-017-0033-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., K.-M. Kim, and S. Yang, 2000: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate, 13, 24612482, https://doi.org/10.1175/1520-0442(2000)013<2461:DABFCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., M. K. Kim, and K.-M. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26, 855864, https://doi.org/10.1007/s00382-006-0114-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., M. Ting, C. Li, and N. Henderson, 2015: Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J. Climate, 28, 41074125, https://doi.org/10.1175/JCLI-D-14-00559.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., M. Ting, and D. E. Lee, 2018: Fast adjustments of the Asian summer monsoon to anthropogenic aerosols. Geophys. Res. Lett., 45, 10011010, https://doi.org/10.1002/2017GL076667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., and Coauthors, 2016: Aerosol and monsoon climate interactions over Asia. Rev. Geophys., 54, 866929, https://doi.org/10.1002/2015RG000500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, S., and Coauthors, 2017: Detectable anthropogenic shift toward heavy precipitation over eastern China. J. Climate, 30, 13811396, https://doi.org/10.1175/JCLI-D-16-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menon, S., J. Hansen, L. Nazarenko, and Y. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 22502253, https://doi.org/10.1126/science.1075159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, Y., and V. Ramaswamy, 2011: A model investigation of aerosol-induced changes in tropical circulation. J. Climate, 24, 51255133, https://doi.org/10.1175/2011JCLI4108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, Y., V. Ramaswamy, and G. Chen, 2011: A model investigation of aerosol-induced changes in boreal winter extratropical circulation. J. Climate, 24, 60776091, https://doi.org/10.1175/2011JCLI4111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, https://doi.org/10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, S., and Coauthors, 2010: The impacts of climate change on water resources and agriculture in China. Nature, 467, 4351, https://doi.org/10.1038/nature09364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Y., M. G. Flanner, L. R. Leung, and W. Wang, 2011: Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmos. Chem. Phys., 11, 19291948, https://doi.org/10.5194/acp-11-1929-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and Coauthors, 2005: Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proc. Natl. Acad. Sci. USA, 102, 53265333, https://doi.org/10.1073/pnas.0500656102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2008: Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res., 113, D14S07, https://doi.org/10.1029/2007JD009661.

    • Search Google Scholar
    • Export Citation
  • Richardson, T. B., P. M. Forster, T. Andrews, and D. J. Parker, 2016: Understanding the rapid precipitation response to CO2 and aerosol forcing on a regional scale. J. Climate, 29, 583594, https://doi.org/10.1175/JCLI-D-15-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, https://doi.org/10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., 1997: A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description and evaluation of microphysical processes. Quart. J. Roy. Meteor. Soc., 123, 12271282, https://doi.org/10.1002/qj.49712354106.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., B. F. Ryan, and J. J. Katzfey, 2000: A scheme for calculation of the liquid fraction in mixed-phase clouds in large-scale models. Mon. Wea. Rev., 128, 10701088, https://doi.org/10.1175/1520-0493(2000)128<1070:ASFCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samset, B. H., and Coauthors, 2016: Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study. Geophys. Res. Lett., 43, 27822791, https://doi.org/10.1002/2016GL068064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and A. Voigt, 2015: Tug of war on summertime circulation between radiative forcing and sea surface warming. Nat. Geosci., 8, 560566, https://doi.org/10.1038/ngeo2449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, D., 2016: South Asian monsoon: Tug of war on rainfall changes. Nat. Climate Change, 6, 2022, https://doi.org/10.1038/nclimate2901.

  • Song, F., T. Zhou, and Y. Qian, 2014: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, 596603, https://doi.org/10.1002/2013GL058705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., L. R. Leung, J. Lu, and L. Dong, 2018a: Seasonally dependent responses of subtropical highs and tropical rainfall to anthropogenic warming. Nat. Climate Change, 8, 787792, https://doi.org/10.1038/s41558-018-0244-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., L. R. Leung, J. Lu, and L. Dong, 2018b: Future changes in seasonality of the North Pacific and North Atlantic subtropical highs. Geophys. Res. Lett., 45, 11 95911 968, https://doi.org/10.1029/2018GL079940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, P.-H., C. Chou, and J.-Y. Tu, 2008: Mechanisms of global warming impacts on robustness of tropical precipitation asymmetry. J. Climate, 21, 55855602, https://doi.org/10.1175/2008JCLI2154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., S.-P. Xie, and Q. Liu, 2016a: Comparison of climate response to anthropogenic aerosol versus greenhouse gas forcing: Distinct patterns. J. Climate, 29, 51755188, https://doi.org/10.1175/JCLI-D-16-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., S.-P. Xie, H. Tokinaga, Q. Liu, and Y. Kosaka, 2016b: Detecting cross-equatorial wind change as a fingerprint of climate response to anthropogenic aerosol forcing. Geophys. Res. Lett., 43, 34443450, https://doi.org/10.1002/2016GL068521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., Q. Liu, L. Xu, and S.-P. Xie, 2013: Response of mode water and subtropical countercurrent to greenhouse gas and aerosol forcing in the North Pacific. J. Ocean Univ. China, 12, 191200, https://doi.org/10.1007/s11802-013-2193-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., L. Lin, M. Yang, Y. Xu, and J. Li, 2017: Disentangling fast and slow responses of the East Asian summer monsoon to reflecting and absorbing aerosol forcings. Atmos. Chem. Phys., 17, 11 07511 088, https://doi.org/10.5194/acp-17-11075-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., B. Lu, and B. Xiang, 2013: Similar spatial patterns of climate responses to aerosol and greenhouse gas changes. Nat. Geosci., 6, 828832, https://doi.org/10.1038/ngeo1931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Coauthors, 2015: Towards predictive understanding of regional climate change. Nat. Climate Change, 5, 921930, https://doi.org/10.1038/nclimate2689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., and S.-P. Xie, 2015: Ocean mediation of tropospheric response to reflecting and absorbing aerosols. Atmos. Chem. Phys., 15, 58275833, https://doi.org/10.5194/acp-15-5827-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, M., S. G. Howell, J. Zhuang, and B. J. Huebert, 2009: Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China—Interpretations of atmospheric measurements during EAST-AIRE. Atmos. Chem. Phys., 9, 20352050, https://doi.org/10.5194/acp-9-2035-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P., X. Zhang, H. Wan, and X. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 10961108, https://doi.org/10.1175/JCLI-3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., and Coauthors, 2009: Why the western Pacific subtropical high has extended westward since the late 1970s. J. Climate, 22, 21992215, https://doi.org/10.1175/2008JCLI2527.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1284 357 58
PDF Downloads 1018 219 11