• Adames, Á. F., 2017: Precipitation budget of the Madden–Julian oscillation. J. Atmos. Sci., 74, 17991817, https://doi.org/10.1175/JAS-D-16-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and J. M. Wallace, 2015: Three-dimensional structure and evolution of the moisture field in the MJO. J. Atmos. Sci., 72, 37333754, https://doi.org/10.1175/JAS-D-15-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913941, https://doi.org/10.1175/JAS-D-15-0170.1; Corrigendum, 74, 3121–3124, https://doi.org/10.1175/JAS-D-17-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., D. Kim, A. H. Sobel, A. D. Genio, and J. Wu, 2017a: Changes in the structure and propagation of the MJO with increasing CO2. J. Adv. Model. Earth Syst., 9, 12511268, https://doi.org/10.1002/2017MS000913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., D. Kim, A. H. Sobel, A. D. Genio, and J. Wu, 2017b: Characterization of moist processes associated with changes in the propagation of MJO with increasing CO2. J. Adv. Model. Earth Syst., 9, 29462967, https://doi.org/10.1002/2017MS001040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahmed, F., and C. Schumacher, 2015: Convective and stratiform components of the precipitation-moisture relationship. Geophys. Res. Lett., 42, 10 45310 462, https://doi.org/10.1002/2015GL066957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, https://doi.org/10.1175/JCLI-D-11-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., Z. Kuang, and E. Tziperman, 2013: Enhanced MJO-like variability at high SST. J. Climate, 26, 9881001, https://doi.org/10.1175/JCLI-D-12-00272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., M. Branson, Z. Kuang, D. A. Randall, and E. Tziperman, 2015: MJO intensification with warming in the superparameterized CESM. J. Climate, 28, 27062724, https://doi.org/10.1175/JCLI-D-14-00494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, https://doi.org/10.1175/JAS3968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, https://doi.org/10.1175/JCLI3819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bui, H. X., and E. D. Maloney, 2018: Change in the Madden-Julian oscillation precipitation and wind variance under global warming. Geophys. Res. Lett., 45, 71487155, https://doi.org/10.1029/2018GL078504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden-Julian oscillation and the North Atlantic Oscillation. Nature, 455, 523527, https://doi.org/10.1038/nature07286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-W. J., W.-L. Tseng, H.-H. Hsu, N. Keenlyside, and B.-J. Tsuang, 2015: The Madden-Julian oscillation in a warmer world. Geophys. Res. Lett., 42, 60346042, https://doi.org/10.1002/2015GL065095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20, 607609, https://doi.org/10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments, and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136, https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter12_FINAL.pdf.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, Z., and D. J. Raymond, 2005: Large-scale modes in a rotating atmosphere with radiative-convective instability and WISHE. J. Atmos. Sci., 62, 40844094, https://doi.org/10.1175/JAS3582.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, Z., and D. J. Raymond, 2007: A simple, vertically resolved model of tropical disturbances with a humidity closure. Tellus, 59A, 344354, https://doi.org/10.1111/j.1600-0870.2007.00230.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilman, D. L., F. J. Fuglister, and J. M. Mitchell Jr., 1963: On the power spectrum of “red noise.” J. Atmos. Sci., 20, 182184, https://doi.org/10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haertel, P., 2018: Sensitivity of the Madden Julian oscillation to ocean warming in a Lagrangian atmospheric model. Climate, 6, 45, https://doi.org/10.3390/cli6020045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haertel, P., K. Straub, and A. Budsock, 2015: Transforming circumnavigating Kelvin waves that initiate and dissipate the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 141, 15861602, https://doi.org/10.1002/qj.2461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1971: A generalized method of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analyses. J. Meteor. Soc. Japan, 49, 125128, https://doi.org/10.2151/jmsj1965.49.2_125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1; Corrigendum, 24, 1559–1560, https://doi.org/10.1175/2010JCLI4045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., E. D. Maloney, and S.-W. Son, 2017: Madden–Julian oscillation Pacific teleconnections: The impact of the basic state and MJO representation in general circulation models. J. Climate, 30, 45674586, https://doi.org/10.1175/JCLI-D-16-0789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., C. Zhang, and J. D. Glick, 1999: Interannual variation of the Madden–Julian oscillation during austral summer. J. Climate, 12, 25382550, https://doi.org/10.1175/1520-0442(1999)012<2538:IVOTMJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hilburn, K. A., and F. J. Wentz, 2008: Intercalibrated passive microwave rain products from the unified microwave ocean retrieval algorithm. J. Appl. Meteor. Climatol., 47, 778795, https://doi.org/10.1175/2007JAMC1635.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, https://doi.org/10.1175/2008JAS2806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, K., and L. E. Back, 2015: Gross moist stability assessment during TOGA COARE: Various interpretations of gross moist stability. J. Atmos. Sci., 72, 41484166, https://doi.org/10.1175/JAS-D-15-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., 2017: Key processes for the eastward propagation of the Madden-Julian oscillation based on multimodel simulations. J. Geophys. Res. Atmos., 122, 755770, https://doi.org/10.1002/2016JD025955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120, 47184748, https://doi.org/10.1002/2014JD022375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., M. Zhao, E. D. Maloney, and D. E. Waliser, 2016: Convective moisture adjustment time scale as a key factor in regulating model amplitude of the Madden-Julian oscillation. Geophys. Res. Lett., 43, 10 41210 419, https://doi.org/10.1002/2016GL070898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2016: Large-scale precipitation tracking and the MJO over the Maritime Continent and Indo-Pacific warm pool. J. Geophys. Res. Atmos., 121, 87558776, https://doi.org/10.1002/2015JD024661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., G.-H. Lim, and K.-Y. Kim, 2006: A new look at the midlatitude-MJO teleconnection in the Northern Hemisphere winter. Quart. J. Roy. Meteor. Soc., 132, 485503, https://doi.org/10.1256/qj.04.87.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., J.-S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, https://doi.org/10.1175/JCLI-D-13-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., H. Kim, and M.-I. Lee, 2017: Why does the MJO detour the Maritime Continent during austral summer? Geophys. Res. Lett., 44, 25792587, https://doi.org/10.1002/2017GL072643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., 2017: The impact of the mean moisture bias on the key physics of MJO propagation in the ECMWF reforecast. J. Geophys. Res. Atmos., 122, 77727784, https://doi.org/10.1002/2017JD027005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, https://doi.org/10.1175/JCLI3735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P., T. Li, B. Wang, M. Zhang, J.-J. Luo, Y. Masumoto, X. Wang, and E. Roeckner, 2013: MJO change with A1B global warming estimated by the 40-km ECHAM5. Climate Dyn., 41, 10091023, https://doi.org/10.1007/s00382-012-1532-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000a: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460, https://doi.org/10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000b: Modulation of hurricane activity in the Gulf of Mexico by the Madden-Julian oscillation. Science, 287, 20022004, https://doi.org/10.1126/science.287.5460.2002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and S.-P. Xie, 2013: Sensitivity of tropical intraseasonal variability to the pattern of climate warming. J. Adv. Model. Earth Syst., 5, 3247, https://doi.org/10.1029/2012MS000171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., A. H. Sobel, and W. M. Hannah, 2010: Intraseasonal variability in an aquaplanet general circulation model. J. Adv. Model. Earth Syst., 2, 5, https://doi.org/10.3894/JAMES.2010.2.5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., and H. H. Hendon, 2015: Subseasonal predication of the Australian summer monsoon anomalies. Geophys. Res. Lett., 42, 10 91310 919, https://doi.org/10.1002/2015GL067086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., O. Alves, and H. H. Hendon, 2009: A coupled GCM analysis of MJO activity at the onset of El Niño. J. Atmos. Sci., 66, 966983, https://doi.org/10.1175/2008JAS2855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, H., 2007: Seasonality and regionality of the Madden–Julian oscillation, Kelvin wave, and equatorial Rossby wave. J. Atmos. Sci., 64, 44004416, https://doi.org/10.1175/2007JAS2179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, H., T. S. L’Ecuyer, and C. D. Kummerow, 2006: The Madden–Julian oscillation recorded in early observations from the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Sci., 63, 27772794, https://doi.org/10.1175/JAS3783.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2542, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2000: Propagation mechanisms for the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 126, 26372651, https://doi.org/10.1002/qj.49712656902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2008: Primary and successive events in the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453, https://doi.org/10.1002/qj.224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milliff, R. F., and R. A. Madden, 1996: The existence and vertical structure of fast, eastward-moving disturbances in the equatorial troposphere. J. Atmos. Sci., 53, 586597, https://doi.org/10.1175/1520-0469(1996)053<0586:TEAVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and D. L. Hartmann, 2014: The atmospheric energy constraint on global-mean precipitation change. J. Climate, 27, 757768, https://doi.org/10.1175/JCLI-D-13-00163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pohl, B., and A. J. Matthew, 2007: Observed changes in the lifetime and amplitude of the Madden–Julian oscillation associated with interannual ENSO sea surface temperature anomalies. J. Climate, 20, 26592674, https://doi.org/10.1175/JCLI4230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze Jr., 2015: Effect of dry large-scale vertical motion on initial MJO convective onset. J. Geophys. Res. Atmos., 120, 47834805, https://doi.org/10.1002/2014JD022961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., and C. S. Bretherton, 2014: Causal evidence that rotational moisture advection is critical to the superparameterized Madden–Julian oscillation. J. Atmos. Sci., 71, 800815, https://doi.org/10.1175/JAS-D-13-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., and D. Yang, 2016: Response of the superparameterized Madden–Julian oscillation to extreme climate and basic state variation challenges a moisture mode view. J. Climate, 29, 49955008, https://doi.org/10.1175/JCLI-D-15-0790.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Z. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J. Climate, 22, 30313046, https://doi.org/10.1175/2008JCLI2739.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., M. J. Pook, P. C. McIntosh, M. C. Wheeler, and H. H. Hendon, 2009: On the remote drivers of rainfall variability in Australia. Mon. Wea. Rev., 137, 32333253, https://doi.org/10.1175/2009MWR2861.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rushley, S. S., D. Kim, C. S. Bretherton, and M.-S. Ahn, 2018: Re-examining the nonlinear moisture-precipitation relationship over the tropical oceans. Geophys. Res. Lett., 45, 11331140, https://doi.org/10.1002/2017GL076296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, J. J., B. Stevens, and T. Crueger, 2013: Madden-Julian oscillation as simulated by the MPI Earth System Model: Over the last and into the next millennium. J. Adv. Model. Earth Syst., 5, 7184, https://doi.org/10.1029/2012MS000180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., D. P. Rowell, K. R. Sperber, and F. Nortley, 1999: On the predictability of the interannual behavior of the Madden-Julian oscillation and its relationship with El Niño. Quart. J. Roy. Meteor. Sci., 125, 583609, https://doi.org/10.1002/qj.49712555411.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705, https://doi.org/10.1175/JAS-D-11-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, https://doi.org/10.1175/JAS-D-12-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Subramanian, A., M. Jochum, A. J. Miller, R. Neale, H. Seo, D. Waliser, and R. Murtugudde, 2014: The MJO and global warming: A study in CCSM4. Climate Dyn., 42, 20192031, https://doi.org/10.1007/s00382-013-1846-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., 2009: The moisture mode in the quasi-equilibrium tropical circulation model. Part I: Analysis based on the weak temperature gradient approximation. J. Atmos. Sci., 66, 15071523, https://doi.org/10.1175/2008JAS2690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., N. Sato, A. Seiki, K. Yoneyama, and R. Shirooka, 2011: Projected future change of MJO and its extratropical teleconnection in East Asia during the northern winter simulated in IPCC AR4 models. SOLA, 7, 201204, https://doi.org/10.2151/sola.2011-051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., K. A. Hilburn, and D. K. Smith, 2012: Remote Sensing Systems DMSP SSM/I daily environmental suite on 0.25° grid, version 7. Remote Sensing Systems, accessed 25 June 2017, Santa Rosa, CA, www.remss.com/missions/ssmi.

  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., H. H. Hendon, S. Cleland, H. Meinke, and A. Donald, 2009: Impacts of the Madden–Julian oscillation on the Australian rainfall and circulation. J. Climate, 22, 14821498, https://doi.org/10.1175/2008JCLI2595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolding, B. O., and E. D. Maloney, 2015: Objective diagnostics and the Madden–Julian oscillation. Part II: Application to moist static energy and moisture budgets. J. Climate, 28, 77867808, https://doi.org/10.1175/JCLI-D-14-00689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolding, B. O., E. D. Maloney, and M. Branson, 2016: Vertically resolved weak temperature gradient analysis of the Madden-Julian oscillation in SP-CESM. J. Adv. Model. Earth Syst., 8, 15861619, https://doi.org/10.1002/2016MS000724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolding, B. O., E. D. Maloney, S. Henderson, and M. Branson, 2017: Climate change and the Madden-Julian oscillation: A vertically resolved weak temperature gradient analysis. J. Adv. Model. Earth Syst., 9, 307331, https://doi.org/10.1002/2016MS000843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Ling, 2017: Barrier effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. J. Climate, 30, 34393459, https://doi.org/10.1175/JCLI-D-16-0614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 565 238 23
PDF Downloads 637 282 19

Changes in the MJO under Greenhouse Gas–Induced Warming in CMIP5 Models

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
  • | 2 Department of Climate and Space Science and Engineering, University of Michigan, Ann Arbor, Michigan
Restricted access

Abstract

This study investigates changes to the Madden–Julian oscillation (MJO) in response to greenhouse gas–induced warming during the twenty-first century. Changes in the MJO’s amplitude, phase speed, and zonal scale are examined in five models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) that demonstrate superior MJO characteristics. Under warming, the CMIP5 models exhibit a robust increase in the spectral power of planetary-scale, intraseasonal, eastward-propagating (MJO) precipitation anomalies (~10.9% K−1). The amplification of MJO variability is accompanied by an increase of the spectral power of the corresponding westward-traveling waves at a similar rate. This suggests that enhanced MJO variability in a warmer climate is likely caused by enhanced background tropical precipitation variability, not by changes in the MJO’s stability. All models examined show an increase in the MJO’s phase speed (1.8% K–1–4.5% K−1) and a decrease in the MJO’s zonal wavenumber (1.0% K–1–3.8% K−1). Using a linear moisture mode framework, this study tests the theory-predicted phase speed changes against the simulated phase speed changes. It is found that the MJO’s acceleration in a warmer climate is a result of enhanced horizontal moisture advection by the steepening of the mean meridional moisture gradient and the decrease in zonal wavenumber, which is partially offset by the lengthening of the convective moisture adjustment time scale and the increase in gross dry stability. While the ability of the linear moisture mode framework to explain MJO phase speed changes is model dependent, the theory can accurately predict the phase speed changes in the model ensemble.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0437.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daehyun Kim, daehyun@uw.edu

Abstract

This study investigates changes to the Madden–Julian oscillation (MJO) in response to greenhouse gas–induced warming during the twenty-first century. Changes in the MJO’s amplitude, phase speed, and zonal scale are examined in five models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) that demonstrate superior MJO characteristics. Under warming, the CMIP5 models exhibit a robust increase in the spectral power of planetary-scale, intraseasonal, eastward-propagating (MJO) precipitation anomalies (~10.9% K−1). The amplification of MJO variability is accompanied by an increase of the spectral power of the corresponding westward-traveling waves at a similar rate. This suggests that enhanced MJO variability in a warmer climate is likely caused by enhanced background tropical precipitation variability, not by changes in the MJO’s stability. All models examined show an increase in the MJO’s phase speed (1.8% K–1–4.5% K−1) and a decrease in the MJO’s zonal wavenumber (1.0% K–1–3.8% K−1). Using a linear moisture mode framework, this study tests the theory-predicted phase speed changes against the simulated phase speed changes. It is found that the MJO’s acceleration in a warmer climate is a result of enhanced horizontal moisture advection by the steepening of the mean meridional moisture gradient and the decrease in zonal wavenumber, which is partially offset by the lengthening of the convective moisture adjustment time scale and the increase in gross dry stability. While the ability of the linear moisture mode framework to explain MJO phase speed changes is model dependent, the theory can accurately predict the phase speed changes in the model ensemble.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0437.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daehyun Kim, daehyun@uw.edu

Supplementary Materials

    • Supplemental Materials (PDF 395 KB)
Save