• Alford, M. H., J. A. MacKinnon, H. L. Simmons, and J. D. Nash, 2016: Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci., 8, 95123, https://doi.org/10.1146/annurev-marine-010814-015746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, https://doi.org/10.1175/JCLI-3223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, A. Adcroft, D. Ferriera, and J. Marshall, 2005: The vertical structure of ocean heat transport. Geophys. Res. Lett., 32, L10603, https://doi.org/10.1029/2005GL022474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, F., 1987: Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17, 970985, https://doi.org/10.1175/1520-0485(1987)017<0970:PSOPEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., and M. D. Cox, 1967: A numerical investigation of the oceanic general circulation. Tellus, 19, 5480, https://doi.org/10.3402/tellusa.v19i1.9761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dalan, F., H. P. Stone, I. V. Kamenkovich, and J. R. Scott, 2005: Sensitivity of the ocean’s climate to diapycnal diffusivity in an EMIC. Part I: Equilibrium state. J. Climate, 18, 24602481, https://doi.org/10.1175/JCLI3411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, J. Le Sommer, A. J. G. Nurser, and A. C. N. Garabato, 2016: On the consumption of Antarctic Bottom Water in the abyssal ocean. J. Phys. Oceanogr., 46, 635661, https://doi.org/10.1175/JPO-D-14-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Den Toom, M., and H. A. Dijkstra, 2011: Scaling the strength of the meridional overturning with vertical diffusivity in an idealized global geometry. Tellus, 63A, 354370, https://doi.org/10.1111/j.1600-0870.2010.00496.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, https://doi.org/10.1175/JCLI-D-11-00560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., D. K. Hutchinson, A. Santoso, and W. P. Sijp, 2017: Ice–atmosphere feedbacks dominate the response of the climate system to Drake Passage closure. J. Climate, 30, 57755790, https://doi.org/10.1175/JCLI-D-15-0554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and D. Ferreira, 2011: What processes drive the ocean heat transport? Ocean Modell., 38, 171186, https://doi.org/10.1016/j.ocemod.2011.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., M. F. Jansen, J. F. Adkins, A. Burke, A. L. Stewart, and A. F. Thompson, 2014: Antarctic sea ice control on the ocean circulation in present and glacial climates. Proc. Natl. Acad. Sci. USA, 111, 87538758, https://doi.org/10.1073/pnas.1323922111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and J.-M. Campin, 2016: Turning ocean mixing upside down. J. Phys. Oceanogr., 46, 22392261, https://doi.org/10.1175/JPO-D-15-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., and G. Holloway, 1984: Dissipation and diffusion by internal wave breaking. J. Mar. Res., 42, 1527, https://doi.org/10.1357/002224084788506158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Adcroft, 2009: Reconciling estimates of the free surface height in Lagrangian vertical coordinate ocean models with mode-split time stepping. Ocean Modell., 29, 1526, https://doi.org/10.1016/j.ocemod.2009.02.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, M. J., and R. W. Hallberg, 2008: Pacific subtropical cell response to reduced equatorial dissipation. J. Phys. Oceanogr., 38, 18941912, https://doi.org/10.1175/2008JPO3708.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58, 943948, https://doi.org/10.1175/1520-0469(2001)058<0943:TPOTPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hieronymus, M., and J. R. Carpenter, 2016: Energy and variance budgets of a diffusive staircase with implications for heat flux scaling. J. Phys. Oceanogr., 46, 25532569, https://doi.org/10.1175/JPO-D-15-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., H. A. Dijkstra, and J. A. Saenz, 2013: The energetics of a collapsing meridional overturning circulation. J. Phys. Oceanogr., 43, 15121524, https://doi.org/10.1175/JPO-D-12-0212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, T., and J. Marshall, 2008: Control of lower-limb overturning circulation in the Southern Ocean by diapycnal mixing and mesoscale eddy transfer. J. Phys. Oceanogr., 38, 28322845, https://doi.org/10.1175/2008JPO3878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, L., R. Hallberg, and S. Legg, 2008: A parameterization of shear driven turbulence for ocean climate models. J. Phys. Oceanogr., 38, 10331053, https://doi.org/10.1175/2007JPO3779.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775, https://doi.org/10.1175/2009JPO4085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811814, https://doi.org/10.1029/2000GL012044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2001: The dynamics of ocean heat transport variability. Rev. Geophys., 39, 385411, https://doi.org/10.1029/2000RG000084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., 2009: Impact of latitudinal variations in vertical diffusivity on climate simulations. J. Geophys. Res., 114, C01010, https://doi.org/10.1029/2008JC005030.

    • Search Google Scholar
    • Export Citation
  • Johns, W. E., and Coauthors, 2011: Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J. Climate, 24, 24292449, https://doi.org/10.1175/2010JCLI3997.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364, 701703, https://doi.org/10.1038/364701a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., R. W. Hallberg, and J. B. Girton, 2006: Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and non-hydrostatic models. Ocean Modell., 11, 6997, https://doi.org/10.1016/j.ocemod.2004.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, https://doi.org/10.1029/2006GL028443; Corrigendum, 34, L14808, https://doi.org/10.1029/2007GL030931.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., K. C. Armour, J. R. Scott, Y. Kostov, U. Hausmann, D. Ferreira, T. G. Shepherd, and C. M. Bitz, 2014: The ocean’s role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Philos. Trans. Roy. Soc. London, 372A, 20130040, https://doi.org/10.1098/rsta.2013.0040.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and Coauthors, 2014: An enhanced model of land water and energy for global hydrologic and Earth-system studies. J. Hydrometeor., 15, 17391761, https://doi.org/10.1175/JHM-D-13-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Msadek, R., W. E. Johns, S. G. Yeager, G. Danabasoglu, T. L. Delworth, and A. Rosati, 2013: The Atlantic meridional heat transport at 26.5°N and its relationship with the MOC in the RAPID array and the GFDL and NCAR coupled models. J. Climate, 26, 43354356, https://doi.org/10.1175/JCLI-D-12-00081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, https://doi.org/10.1016/0011-7471(66)90602-4.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2011: A theory of deep stratification and the overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485502, https://doi.org/10.1175/2010JPO4529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667, https://doi.org/10.1175/JPO-D-11-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nilsson, J., G. Broström, and G. Walin, 2003: The thermohaline circulation and vertical mixing: Does weaker density stratification give stronger overturning? J. Phys. Oceanogr., 33, 27812795, https://doi.org/10.1175/1520-0485(2003)033<2781:TTCAVM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nof, D., and A. M. de Bohr, 2004: From the Southern Ocean to the North Atlantic in the Ekman layer? Bull. Amer. Meteor. Soc., 85, 7987, https://doi.org/10.1175/BAMS-85-1-79.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nycander, J., 2011: Energy conversion, mixing energy, and neutral surfaces with a nonlinear equation of state. J. Phys. Oceanogr., 41, 2841, https://doi.org/10.1175/2010JPO4250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oueslati, B., and G. Bellon, 2015: The double ITCZ bias in CMIP5 models: Interactions between SST, large-scale circulation and precipitation. Climate Dyn., 44, 585607, https://doi.org/10.1007/s00382-015-2468-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, A., and H. Stommel, 1959: The oceanic thermocline and the associated thermohaline circulation. Tellus, 11, 295308, https://doi.org/10.3402/tellusa.v11i3.9317.

    • Search Google Scholar
    • Export Citation
  • Rojas, M., 2013: Sensitivity of Southern Hemisphere circulation to LGM and 4xCO2 climates. Geophys. Res. Lett., 40, 965970, https://doi.org/10.1002/grl.50195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., 2006: The effect of localized mixing on the ocean circulation and time-dependent climate change. J. Phys. Oceanogr., 36, 140160, https://doi.org/10.1175/JPO2839.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., and G. K. Vallis, 1997: Large-scale circulation with small diapycnal diffusion: The two-thermocline limit. J. Mar. Res., 55, 223275, https://doi.org/10.1357/0022240973224382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean. Modell., 6, 254263, https://doi.org/10.1016/S1463-5003(03)00011-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, https://doi.org/10.1029/2002GL015633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1978: Constraints on dynamical transports of energy on a spherical plant. Dyn. Atmos. Oceans, 2, 123139, https://doi.org/10.1016/0377-0265(78)90006-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1998: On the ocean’s large-scale circulation in the limit off no vertical mixing. J. Phys. Oceanogr., 28, 18321852, https://doi.org/10.1175/1520-0485(1998)028<1832:OTOSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., and R. Farneti, 2009: Meridional energy transport in a coupled atmosphere–ocean system: Scaling and numerical experiments. Quart. J. Roy. Meteor. Soc., 135, 16431660, https://doi.org/10.1002/qj.498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525532, https://doi.org/10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., A. Adcroft, S. M. Griffies, R. W. Hallberg, L. W. Horowitz, and R. J. Stouffer, 2013: Influence of ocean and atmosphere components on simulated climate sensitivities. J. Climate, 26, 231245, https://doi.org/10.1175/JCLI-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the ocean. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zika, J. D., W. P. Sijp, and M. H. England, 2013: Vertical heat transport by the ocean circulation and the role of mechanical and haline forcing. J. Phys. Oceanogr., 43, 20952112, https://doi.org/10.1175/JPO-D-12-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 471 266 11
PDF Downloads 423 233 13

Oceanic Overturning and Heat Transport: The Role of Background Diffusivity

View More View Less
  • 1 Department of Meteorology, Stockholm University, Stockholm, and Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
  • | 2 Department of Meteorology, Stockholm University, Stockholm, Sweden
  • | 3 National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
Restricted access

Abstract

The role of oceanic background diapycnal diffusion for the equilibrium climate state is investigated in the global coupled climate model CM2G. Special emphasis is put on the oceanic meridional overturning and heat transport. Six runs with the model, differing only by their value of the background diffusivity, are run to steady state and the statistically steady integrations are compared. The diffusivity changes have large-scale impacts on many aspects of the climate system. Two examples are the volume-mean potential temperature, which increases by 3.6°C between the least and most diffusive runs, and the Antarctic sea ice extent, which decreases rapidly as the diffusivity increases. The overturning scaling with diffusivity is found to agree rather well with classical theoretical results for the upper but not for the lower cell. An alternative empirical scaling with the mixing energy is found to give good results for both cells. The oceanic meridional heat transport increases strongly with the diffusivity, an increase that can only partly be explained by increases in the meridional overturning. The increasing poleward oceanic heat transport is accompanied by a decrease in its atmospheric counterpart, which keeps the increase in the planetary energy transport small compared to that in the ocean.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Magnus Hieronymus, hieronymus.magnus@gmail.com

Abstract

The role of oceanic background diapycnal diffusion for the equilibrium climate state is investigated in the global coupled climate model CM2G. Special emphasis is put on the oceanic meridional overturning and heat transport. Six runs with the model, differing only by their value of the background diffusivity, are run to steady state and the statistically steady integrations are compared. The diffusivity changes have large-scale impacts on many aspects of the climate system. Two examples are the volume-mean potential temperature, which increases by 3.6°C between the least and most diffusive runs, and the Antarctic sea ice extent, which decreases rapidly as the diffusivity increases. The overturning scaling with diffusivity is found to agree rather well with classical theoretical results for the upper but not for the lower cell. An alternative empirical scaling with the mixing energy is found to give good results for both cells. The oceanic meridional heat transport increases strongly with the diffusivity, an increase that can only partly be explained by increases in the meridional overturning. The increasing poleward oceanic heat transport is accompanied by a decrease in its atmospheric counterpart, which keeps the increase in the planetary energy transport small compared to that in the ocean.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Magnus Hieronymus, hieronymus.magnus@gmail.com
Save