Winter Coastal Divergence as a Predictor for the Minimum Sea Ice Extent in the Laptev Sea

Charles Brunette Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Québec, Canada

Search for other papers by Charles Brunette in
Current site
Google Scholar
PubMed
Close
,
Bruno Tremblay Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Québec, Canada

Search for other papers by Bruno Tremblay in
Current site
Google Scholar
PubMed
Close
, and
Robert Newton Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Robert Newton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Seasonal predictability of the minimum sea ice extent (SIE) in the Laptev Sea is investigated using winter coastal divergence as a predictor. From February to May, the new ice forming in wind-driven coastal polynyas grows to a thickness approximately equal to the climatological thickness loss due to summer thermodynamic processes. Estimating the area of sea ice that is preconditioned to melt enables seasonal predictability of the minimum SIE. Wintertime ice motion is quantified by seeding passive tracers along the coastlines and advecting them with the Lagrangian Ice Tracking System (LITS) forced with sea ice drifts from the Polar Pathfinder dataset for years 1992–2016. LITS-derived landfast ice estimates are comparable to those of the Russian Arctic and Antarctic Research Institute ice charts. Time series of the minimum SIE and coastal divergence show trends of −24.2% and +31.3% per decade, respectively. Statistically significant correlation (r = −0.63) between anomalies of coastal divergence and the following September SIE occurs for coastal divergence integrated from February to the beginning of May. Using the coastal divergence anomaly to predict the minimum SIE departure from the trend improves the explained variance by 21% compared to hindcasts based on persistence of the linear trend. Coastal divergence anomalies correlate with the winter mean Arctic Oscillation index (r = 0.69). LITS-derived areas of coastal divergence tend to underestimate the total area covered by thin ice in the CryoSat-2/SMOS (Soil Moisture and Ocean Salinity) thickness dataset, as suggested by a thermodynamic sea ice growth model.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Charles Brunette, charles.brunette@mail.mcgill.ca

Abstract

Seasonal predictability of the minimum sea ice extent (SIE) in the Laptev Sea is investigated using winter coastal divergence as a predictor. From February to May, the new ice forming in wind-driven coastal polynyas grows to a thickness approximately equal to the climatological thickness loss due to summer thermodynamic processes. Estimating the area of sea ice that is preconditioned to melt enables seasonal predictability of the minimum SIE. Wintertime ice motion is quantified by seeding passive tracers along the coastlines and advecting them with the Lagrangian Ice Tracking System (LITS) forced with sea ice drifts from the Polar Pathfinder dataset for years 1992–2016. LITS-derived landfast ice estimates are comparable to those of the Russian Arctic and Antarctic Research Institute ice charts. Time series of the minimum SIE and coastal divergence show trends of −24.2% and +31.3% per decade, respectively. Statistically significant correlation (r = −0.63) between anomalies of coastal divergence and the following September SIE occurs for coastal divergence integrated from February to the beginning of May. Using the coastal divergence anomaly to predict the minimum SIE departure from the trend improves the explained variance by 21% compared to hindcasts based on persistence of the linear trend. Coastal divergence anomalies correlate with the winter mean Arctic Oscillation index (r = 0.69). LITS-derived areas of coastal divergence tend to underestimate the total area covered by thin ice in the CryoSat-2/SMOS (Soil Moisture and Ocean Salinity) thickness dataset, as suggested by a thermodynamic sea ice growth model.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Charles Brunette, charles.brunette@mail.mcgill.ca
Save
  • Alexandrov, V. Y., T. Martin, J. Kolatschek, H. Eicken, M. Kreyscher, and A. P. Makshtas, 2000: Sea ice circulation in the Laptev Sea and ice export to the Arctic Ocean: Results from satellite remote sensing and numerical modeling. J. Geophys. Res., 105, 17 14317 159, https://doi.org/10.1029/2000JC900029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arrigo, K. R., G. van Dijken, and S. Pabi, 2008: Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett., 35, L19603, https://doi.org/10.1029/2008GL035028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., K. C. Armour, C. M. Bitz, and E. DeWeaver, 2011: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J. Climate, 24, 231250, https://doi.org/10.1175/2010JCLI3775.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., R. Cullather, W. Wang, J. Zhang, and C. Bitz, 2015: Model forecast skill and sensitivity to initial conditions in the seasonal sea ice outlook. Geophys. Res. Lett., 42, 80428048, https://doi.org/10.1002/2015GL065860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blockley, E. W., and K. A. Peterson, 2018: Improving Met Office seasonal forecasts of Arctic sea ice using assimilation of CryoSat-2 thickness. Cryosphere, 12, 34193438, https://doi.org/10.5194/tc-12-3419-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushuk, M., and D. Giannakis, 2015: Sea-ice reemergence in a model hierarchy. Geophys. Res. Lett., 42, 53375345, https://doi.org/10.1002/2015GL063972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushuk, M., R. Msadek, M. Winton, G. A. Vecchi, R. Gudgel, A. Rosati, and X. Yang, 2017a: Summer enhancement of Arctic sea ice volume anomalies in the September-ice zone. J. Climate, 30, 23412362, https://doi.org/10.1175/JCLI-D-16-0470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushuk, M., R. Msadek, M. Winton, G. A. Vecchi, R. Gudgel, A. Rosati, and X. Yang, 2017b: Skillful regional prediction of Arctic sea ice on seasonal timescales. Geophys. Res. Lett., 44, 49534964, https://doi.org/10.1002/2017GL073155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W., E. Blanchard-Wrigglesworth, C. M. Bitz, C. Ladd, and P. J. Stabeno, 2016: Diagnostic sea ice predictability in the pan-Arctic and U.S. Arctic regional seas. Geophys. Res. Lett., 43, 11 68811 696, https://doi.org/10.1002/2016GL070735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevallier, M., and D. Salas-Mélia, 2012: The role of the sea ice thickness distribution in the Arctic sea ice potential predictability: A diagnostic approach with a coupled GCM. J. Climate, 25, 30253038, https://doi.org/10.1175/JCLI-D-11-00209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevallier, M., D. Salas-Mélia, A. Voldoire, M. Déqué, and G. Garric, 2013: Seasonal forecasts of the pan-Arctic sea ice extent using a GCM-based seasonal prediction system. J. Climate, 26, 60926104, https://doi.org/10.1175/JCLI-D-12-00612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, J., M. E. Johnston, and E. J. Stewart, 2014: Governance of Arctic expedition cruise ships in a time of rapid environmental and economic change. Ocean Coastal Manage., 89, 8899, https://doi.org/10.1016/j.ocecoaman.2013.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, J. J., and K. I. Hodges, 2018: Growing land–sea temperature contrast and the intensification of Arctic cyclones. Geophys. Res. Lett., 45, 36733681, https://doi.org/10.1029/2018GL077587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, J. J., S. Tietsche, and E. Hawkins, 2014: Pan-Arctic and regional sea ice predictability: Initialization month dependence. J. Climate, 27, 43714390, https://doi.org/10.1175/JCLI-D-13-00614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeRepentigny, P., B. Tremblay, R. Newton, and S. Pfirman, 2016: Patterns of sea ice retreat in the transition to a seasonally ice-free Arctic. J. Climate, 29, 69937008, https://doi.org/10.1175/JCLI-D-15-0733.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dmitrenko, I. A., S. A. Kirillov, and L. B. Tremblay, 2008: The long-term and interannual variability of summer fresh water storage over the eastern Siberian shelf: Implication for climatic change. J. Geophys. Res., 113, C03007, https://doi.org/10.1029/2007JC004304.

    • Search Google Scholar
    • Export Citation
  • Fetterer, F., K. Knowles, W. Meier, M. Savoie, and A. K. Windnagel, 2017 (updated daily): Sea Ice Index, version 3. National Snow and Ice Data Center, accessed November 2017, https://doi.org/10.7265/N5K072F8.

    • Crossref
    • Export Citation
  • Frey, K. E., J. C. Comiso, L. W. Cooper, R. R. Gradinger, J. M. Grebmeier, S.-I. Saitoh, and J.-E. Tremblay, 2015: Arctic Ocean Primary Productivity. Arctic report card: Update for 2015, NOAA, https://www.arctic.noaa.gov/Report-Card/Report-Card-2015/ArtMID/5037/ArticleID/228/Arctic-Ocean-Primary-Productivity.

  • Germe, A., M. Chevallier, D. Salas y Mélia, E. Sanchez-Gomez, and C. Cassou, 2014: Interannual predictability of Arctic sea ice in a global climate model: Regional contrasts and temporal evolution. Climate Dyn., 43, 25192538, https://doi.org/10.1007/s00382-014-2071-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guemas, V., M. Chevallier, M. Déqué, O. Bellprat, and F. Doblas-Reyes, 2016: Impact of sea ice initialization on sea ice and atmosphere prediction skill on seasonal timescales. Geophys. Res. Lett., 43, 38893896, https://doi.org/10.1002/2015GL066626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houseknecht, D. W., K. J. Bird, and C. P. Garrity, 2012a: Assessment of undiscovered petroleum resources of the Amerasia Basin Petroleum Province. U.S. Geological Survey Scientific Investigations Rep. 2012-5146, 36 pp., https://pubs.usgs.gov/sir/2012/5146/.

    • Crossref
    • Export Citation
  • Houseknecht, D. W., K. J. Bird, and C. P. Garrity, 2012b: Assessment of undiscovered petroleum resources of the Arctic Alaska Petroleum Province. U.S. Geological Survey Scientific Investigations Rep. 2012-5147, 26 pp., http://pubs.usgs.gov/sir/2012/5147.

  • Hutchings, J., and D. K. Perovich, 2015: Preconditioning of the 2007 sea-ice melt in the eastern Beaufort Sea, Arctic Ocean. Ann. Glaciol., 56, 9498, https://doi.org/10.3189/2015AoG69A006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huwald, H., L.-B. Tremblay, and H. Blatter, 2005: Reconciling different observational data sets from Surface Heat Budget of the Arctic Ocean (SHEBA) for model validation purposes. J. Geophys. Res., 110, C05009, https://doi.org/10.1029/2003JC002221.

    • Search Google Scholar
    • Export Citation
  • Isaaks, E., and R. M. Srivastava, 1989: An Introduction to Applied Geostatistics. Oxford University Press, 561 pp.

  • Itkin, P., and T. Krumpen, 2017: Winter sea ice export from the Laptev Sea preconditions the local summer sea ice cover and fast ice decay. Cryosphere, 11, 23832391, https://doi.org/10.5194/tc-11-2383-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, M., J. Dawson, E. D. Souza, and E. Stewart, 2017: Management challenges for the fastest growing marine shipping sector in Arctic Canada: Pleasure crafts. Polar Rec., 53, 6778, https://doi.org/10.1017/S0032247416000565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, T., and M. Hilmer, 2001: The link between the North Atlantic Oscillation and Arctic sea ice export through Fram Strait. J. Climate, 14, 39323943, https://doi.org/10.1175/1520-0442(2001)014<3932:TLBTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaleschke, L., X. Tian-Kunze, N. Maas, R. Ricker, S. Hendricks, and M. Dusch, 2015: Improved retrieval of sea ice thickness from SMOS and CryoSat-2. Proc. 2015 IEEE Geosci. Remote Sens. Symp. (IGARSS), Milan, Italy, IEEE, https://doi.org/10.1109/IGARSS.2015.7327014.

    • Crossref
    • Export Citation
  • Kimura, N., A. Nishimura, Y. Tanaka, and H. Yamaguchi, 2013: Influence of winter sea-ice motion on summer ice cover in the Arctic. Polar Res., 32, 20193, https://doi.org/10.3402/polar.v32i0.20193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krumpen, T., M. Janout, K. I. Hodges, R. Gerdes, F. Girard-Ardhuin, J. A. Hölemann, and S. Willmes, 2013: Variability and trends in Laptev Sea ice outflow between 1992–2011. Cryosphere, 7, 349363, https://doi.org/10.5194/tc-7-349-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kryjov, V. N., and Y.-M. Min, 2016: Predictability of the wintertime Arctic Oscillation based on autumn circulation. Int. J. Climatol., 36, 41814186, https://doi.org/10.1002/joc.4616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., G. Spreen, and D. Pang, 2013: Arctic sea ice circulation and drift speed: Decadal trends and ocean currents. J. Geophys. Res. Oceans, 118, 24082425, https://doi.org/10.1002/jgrc.20191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, https://doi.org/10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, W., F. Fetterer, M. Savoie, S. Mallory, R. Duerr, and J. Stroeve, 2017: NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, version 3. National Snow and Ice Data Center, accessed November 2017, https://doi.org/10.7265/N59P2ZTG.

    • Crossref
    • Export Citation
  • Meier, W., M. Savoie, and S. Mallory, 2018: CDR Climate algorithm and theoretical basis document: Passive microwave sea ice concentration, revision 7, NOAA, 73 pp., https://nsidc.org/sites/nsidc.org/files/technical-references/SeaIce_CDR_CATBD_final_Rev-7.pdf.

  • National Weather Service/Climate Prediction Center, 2005, updated daily: Monthly Mean AO index. NOAA/NWS/CPC, digital media, accessed November 2017, http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/monthly.ao.index.b50.current.ascii.table.

  • Newton, R., S. Pfirman, B. Tremblay, and P. DeRepentigny, 2017: Increasing transnational sea-ice exchange in a changing Arctic Ocean. Earth’s Future, 5, 633647, https://doi.org/10.1002/2016EF000500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikolaeva, A. J., and N. P. Sesterikov, 1970: A method of calculation of ice conditions (on the example of the Laptev Sea). Ice Forecasting Techniques for the Arctic Seas, B. A. Krutskih, Z. M. Gudkovic, and A. L. Sokolov, Eds., Amerind Publishing, 150–230.

  • Ogi, M., S. Rysgaard, and D. G. Barber, 2016: Importance of combined winter and summer Arctic Oscillation (AO) on September sea ice extent. Environ. Res. Lett., 11, 034019, https://doi.org/10.1088/1748-9326/11/3/034019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H.-S., A. L. Stewart, and J.-H. Son, 2018: Dynamic and thermodynamic impacts of the winter Arctic Oscillation on summer sea ice extent. J. Climate, 31, 14831497, https://doi.org/10.1175/JCLI-D-17-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, G., W. Meier, D. Scott, and M. Savoie, 2013: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst. Sci. Data, 5, 311318, https://doi.org/10.5194/essd-5-311-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, A., D. Schröder, J. Stroeve, T. Markus, J. Miller, N. Kurtz, D. Feltham, and D. Flocco, 2017: Skillful spring forecasts of September Arctic sea ice extent using passive microwave sea ice observations. Earth’s Future, 5, 254263, https://doi.org/10.1002/2016EF000495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pizzolato, L., S. E. Howell, J. Dawson, F. Laliberté, and L. Copland, 2016: The influence of declining sea ice on shipping activity in the Canadian Arctic. Geophys. Res. Lett., 43, 12 14612 154, https://doi.org/10.1002/2016GL071489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Preußer, A., G. Heinemann, S. Willmes, and P. Stephan, 2016: Circumpolar polynya regions and ice production in the Arctic: Results from MODIS thermal infrared imagery from 2002/2003 to 2014/2015 with a regional focus on the Laptev Sea. Cryosphere, 10, 30213042, https://doi.org/10.5194/tc-10-3021-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raleigh, M. S., C. C. Landry, M. Hayashi, W. L. Quinton, and J. D. Lundquist, 2013: Approximating snow surface temperature from standard temperature and humidity data: New possibilities for snow model and remote sensing evaluation. Water Resour. Res., 49, 80538069, https://doi.org/10.1002/2013WR013958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricker, R., S. Hendricks, V. Helm, H. Skourup, and M. Davidson, 2014: Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation. Cryosphere, 8, 16071622, https://doi.org/10.5194/tc-8-1607-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricker, R., S. Hendricks, L. Kaleschke, X. Tian-Kunze, J. King, and C. Haas, 2017a: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. Cryosphere, 11, 16071623, https://doi.org/10.5194/tc-11-1607-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricker, R., S. Hendricks, L. Kaleschke, X. Tian-Kunze, J. King, and C. Haas, 2017b: Weekly sea ice thickness maps based on CryoSat-2/SMOS data fusion, version 1.3. Alfred Wegener Institute for Polar and Marine Research and German Society of Polar Research, accessed November 2017, http://data.meereisportal.de/data/cs2smos/version1.3/.

  • Rigor, I. G., and J. M. Wallace, 2004: Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophys. Res. Lett., 31, L09401, https://doi.org/10.1029/2004GL019492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., J. M. Wallace, and R. L. Colony, 2002: Response of sea ice to the Arctic Oscillation. J. Climate, 15, 26482663, https://doi.org/10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozman, P., J. A. Hölemann, T. Krumpen, R. Gerdes, C. Köberle, T. Lavergne, S. Adams, and F. Girard-Ardhuin, 2011: Validating satellite derived and modelled sea-ice drift in the Laptev Sea with in situ measurements from the winter of 2007/2008. Polar Res., 30, 7218, https://doi.org/10.3402/polar.v30i0.7218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Selyuzhenok, V., T. Krumpen, A. Mahoney, M. Janout, and R. Gerdes, 2015: Seasonal and interannual variability of fast ice extent in the southeastern Laptev Sea between 1999 and 2013. J. Geophys. Res. Oceans, 120, 77917806, https://doi.org/10.1002/2015JC011135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., Jr., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379389, https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shalina, E. V., and S. Sandven, 2018: Snow depth on Arctic sea ice from historical in situ data. Cryosphere, 12, 18671886, https://doi.org/10.5194/tc-12-1867-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedsrud, L. H., M. H. Halvorsen, J. C. Stroeve, R. Zhang, and K. Kloster, 2017: Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years. Cryosphere, 11, 6579, https://doi.org/10.5194/tc-11-65-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. L., L. M. Polvani, and L. B. Tremblay, 2018: The impact of stratospheric circulation extremes on minimum Arctic sea ice extent. J. Climate, 31, 71697183, https://doi.org/10.1175/JCLI-D-17-0495.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, S. R., and L. C. Smith, 2015: Influence of climate model variability on projected Arctic shipping futures. Earth’s Future, 3, 331343, https://doi.org/10.1002/2015EF000317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., F. Molteni, and L. Ferranti, 2015: Atmospheric initial conditions and the predictability of the Arctic Oscillation. Geophys. Res. Lett., 42, 11731179, https://doi.org/10.1002/2014GL062681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., L. C. Hamilton, C. M. Bitz, and E. Blanchard-Wrigglesworth, 2014: Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008–2013. Geophys. Res. Lett., 41, 24112418, https://doi.org/10.1002/2014GL059388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sumata, H., T. Lavergne, F. Girard-Ardhuin, N. Kimura, M. A. Tschudi, F. Kauker, M. Karcher, and R. Gerdes, 2014: An intercomparison of Arctic ice drift products to deduce uncertainty estimates. J. Geophys. Res. Oceans, 119, 48874921, https://doi.org/10.1002/2013JC009724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian-Kunze, X., L. Kaleschke, and N. Maass, 2016: SMOS daily sea ice thickness version 3. University of Hamburg, Germany, https://icdc.cen.uni-hamburg.de/thredds/catalog/ftpthredds/smos_sea_ice_thickness/catalog.html.

  • Tremblay, L., G. Schmidt, S. Pfirman, R. Newton, and P. Derepentigny, 2015: Is ice-rafted sediment in a North Pole marine record evidence for perennial sea-ice cover? Philos. Trans. Roy. Soc., 373A, 20140168, https://doi.org/10.1098/rsta.2014.0168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tschudi, M., C. Fowler, J. Maslanik, J. S. Stewart, and W. Meier, 2016: Polar Pathfinder daily 25 km EASE-grid sea ice motion vectors, version 3. National Snow and Ice Data Center, accessed November 2017, https://doi.org/10.5067/O57VAIT2AYYY.

    • Crossref
    • Export Citation
  • Tucker, W. B., J. W. Weatherly, D. T. Eppler, L. D. Farmer, and D. L. Bentley, 2001: Evidence for rapid thinning of sea ice in the western Arctic Ocean at the end of the 1980s. Geophys. Res. Lett., 28, 28512854, https://doi.org/10.1029/2001GL012967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, S. G., I. G. Rigor, N. Untersteiner, V. F. Radionov, N. N. Bryazgin, Y. I. Aleksandrov, and R. Colony, 1999: Snow depth on Arctic sea ice. J. Climate, 12, 18141829, https://doi.org/10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, J., B. Tremblay, R. Newton, and R. Allard, 2016: Dynamic preconditioning of the minimum September sea-ice extent. J. Climate, 29, 58795891, https://doi.org/10.1175/JCLI-D-15-0515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmes, S., T. Krumpen, S. Adams, L. Rabenstein, C. Haas, J. Hölemann, S. Hendricks, and G. Heinemann, 2010: Cross-validation of polynya monitoring methods from multisensor satellite and airborne data: A case study for the Laptev Sea. Can. J. Remote Sens., 36 (Suppl. 1), S196–S210, https://doi.org/10.5589/m10-012.

    • Crossref
    • Export Citation
  • Willmes, S., S. Adams, D. Schröder, and G. Heinemann, 2011: Spatio-temporal variability of polynya dynamics and ice production in the Laptev Sea between the winters of 1979/80 and 2007/08. Polar Res., 30, 5971, https://doi.org/10.3402/polar.v30i0.5971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and D. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131, 845861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 539 143 6
PDF Downloads 325 73 2