Summer Atmospheric Heat Sources over the Western–Central Tibetan Plateau: An Integrated Analysis of Multiple Reanalysis and Satellite Datasets

Zhiling Xie Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, China, and Department of Atmospheric Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii

Search for other papers by Zhiling Xie in
Current site
Google Scholar
PubMed
Close
and
Bin Wang Department of Atmospheric Sciences and International Pacific Research Center, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, and Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Bin Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Multiple bias-corrected top-quality reanalysis datasets, gauge-based observations, and selected satellite products are synthetically employed to revisit the climatology and variability of the summer atmospheric heat sources over the Tibetan Plateau (TP). Verification-based selection and ensemble-mean methods are utilized to combine various datasets. Different from previous works, this study pays special attention to estimating the total heat source (TH) and its components over the data-void western plateau (70°–85°E), including the surface sensible heat (SH), latent heat released by precipitation (LH), and net radiation flux (RD). Consistent with previous studies, the climatology of summer SH (LH) typically increases (decreases) from southeast to northwest. Generally, LH dominates TH over most of the TP. A notable new finding is a minimum TH area over the high-altitude region of the northwestern TP, where the Karakoram mountain range is located. We find that during the period of 1984–2006, TH shows insignificant trends over the eastern and central TP, whereas it exhibits an evident increasing trend over the western TP that is attributed to the rising tendency of LH before 1996 and to that of RD after 1996. The year-to-year variation of TH over the central–eastern TP is highly correlated with that of LH, but that is not the case over the western TP. It is also worth noting that the variations of TH in each summer month are not significantly correlated with each other, and hence study of the interannual variation of the TP heat sources should consider the remarkable subseasonal variations.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 18 February 2019 to correct a funding grant number in the Acknowledgments section that was incorrect when originally published.

Corresponding author: Bin Wang, wangbin@hawaii.edu

Abstract

Multiple bias-corrected top-quality reanalysis datasets, gauge-based observations, and selected satellite products are synthetically employed to revisit the climatology and variability of the summer atmospheric heat sources over the Tibetan Plateau (TP). Verification-based selection and ensemble-mean methods are utilized to combine various datasets. Different from previous works, this study pays special attention to estimating the total heat source (TH) and its components over the data-void western plateau (70°–85°E), including the surface sensible heat (SH), latent heat released by precipitation (LH), and net radiation flux (RD). Consistent with previous studies, the climatology of summer SH (LH) typically increases (decreases) from southeast to northwest. Generally, LH dominates TH over most of the TP. A notable new finding is a minimum TH area over the high-altitude region of the northwestern TP, where the Karakoram mountain range is located. We find that during the period of 1984–2006, TH shows insignificant trends over the eastern and central TP, whereas it exhibits an evident increasing trend over the western TP that is attributed to the rising tendency of LH before 1996 and to that of RD after 1996. The year-to-year variation of TH over the central–eastern TP is highly correlated with that of LH, but that is not the case over the western TP. It is also worth noting that the variations of TH in each summer month are not significantly correlated with each other, and hence study of the interannual variation of the TP heat sources should consider the remarkable subseasonal variations.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 18 February 2019 to correct a funding grant number in the Acknowledgments section that was incorrect when originally published.

Corresponding author: Bin Wang, wangbin@hawaii.edu
Save
  • Adler, R. F., and Coauthors, 2003: Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present), version 2.2. NOAA/OAR/ESRL PSD, accessed 14 October 2015, https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html.

    • Crossref
    • Export Citation
  • Beaudoing, H., and M. Rodell, 2015: GLDAS Noah Land Surface Model L4 monthly 1.0 × 1.0 degree, version 2.0. Goddard Earth Sciences Data and Information Services Center, accessed 7 February 2017, https://doi.org/10.5067/QN80TO7ZHFJZ.

    • Crossref
    • Export Citation
  • Beaudoing, H., and M. Rodell, 2016: GLDAS Noah Land Surface Model L4 monthly 1.0 × 1.0 degree V2.1. Goddard Earth Sciences Data and Information Services Center, accessed 20 June 2018, https://doi.org/10.5067/LWTYSMP3VM5Z.

    • Crossref
    • Export Citation
  • Chen, J., X. Wu, Y. Yin, and H. Xiao, 2015: Characteristics of heat sources and clouds over eastern China and the Tibetan Plateau in boreal summer. J. Climate, 28, 72797296, https://doi.org/10.1175/JCLI-D-14-00859.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: NOAA’s Precipitation Reconstruction over Land (PREC/L). NOAA/OAR/ESRL PSD, accessed 14 October 2015, https://www.esrl.noaa.gov/psd/data/gridded/data.precl.html.

  • Dee, D. P., and Coauthors, 2011a: ERA-Interim reanalysis. ECMWF datasets, accessed 3 February 2017, https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim.

  • Dee, D. P., and Coauthors, 2011b: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., and G. Wu, 2005: Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dyn., 24, 793807, https://doi.org/10.1007/s00382-004-0488-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., and G. Wu, 2006: Change of cloud amount and the climate warming on the Tibetan Plateau. Geophys. Res. Lett., 33, L22704, https://doi.org/10.1029/2006GL027946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., and G. Wu, 2008: Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: Observations. J. Climate, 21, 31493164, https://doi.org/10.1175/2007JCLI1912.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., and G. Wu, 2009: Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part II: Connection with climate warming. J. Climate, 22, 41974212, https://doi.org/10.1175/2009JCLI2699.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., M. Wang, and Z. Xiang, 2014: Uncertainties in quantitatively estimating the atmospheric heat source over the Tibetan Plateau. Atmos. Ocean. Sci. Lett., 7, 2833, https://doi.org/10.1080/16742834.2014.11447131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GMAO, 2015: MERRA-2 tavgM_2d_flx_Nx: 2D, Monthly mean, time-averaged, single-level surface flux diagnostics, version 5.12.4. Goddard Earth Sciences Data and Information Services Center, accessed 3 February 2017, https://doi.org/10.5067/0JRLVL8YV2Y4.

    • Crossref
    • Export Citation
  • Hsu, H.-H., and X. Liu, 2003: Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall. Geophys. Res. Lett., 30, 2066, https://doi.org/10.1029/2003GL017909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., Y. Li, S. Yang, K. Yang, and J. Chen, 2016: Interannual variation of summer atmospheric heat source over the Tibetan Plateau and the role of convection around the western Maritime Continent. J. Climate, 29, 121138, https://doi.org/10.1175/JCLI-D-15-0181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JMA, 2008: JRA-25, monthly means. NCAR Computational and Information Systems Laboratory Research Data Archive, accessed 9 March 2017, http://rda.ucar.edu/datasets/ds625.1/.

  • JMA, 2013: JRA-55, monthly means and variances. NCAR Computational and Information Systems Laboratory Research Data Archive, accessed 15 October 2015, https://doi.org/10.5065/D60G3H5B.

    • Crossref
    • Export Citation
  • Jung, M., and Coauthors, 2011: Global patterns of land–atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosci., 116, G00J07, https://doi.org/10.1029/2010JG001566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE Reanalysis 2. NOAA/OAR/ESRL PSD, accessed 3 February 2017, https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html.

  • Kang, S., Y. Xu, Q. You, W. A. Flügel, N. Pepin, and T. Yao, 2010: Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett., 5, 015101, https://doi.org/10.1088/1748-9326/5/1/015101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2018: Surface irradiances of Edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Climate, 31, 45014527, https://doi.org/10.1175/JCLI-D-17-0523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., T. Duan, and Y. Gong, 2000: The bulk transfer coefficients and surface fluxes on the western Tibetan Plateau. Chin. Sci. Bull., 45, 12211226, https://doi.org/10.1007/BF02886084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, C., K. Yang, J. Qin, and R. Fu, 2013: Observed coherent trends of surface and upper-air wind speed over China since 1960. J. Climate, 26, 28912903, https://doi.org/10.1175/JCLI-D-12-00093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Z. Yin, 2001: Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the North Atlantic Oscillation. J. Climate, 14, 28962909, https://doi.org/10.1175/1520-0442(2001)014<2896:SATVOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and Coauthors, 2018: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 data product. J. Climate, 31, 895918, https://doi.org/10.1175/JCLI-D-17-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, H., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966989, https://doi.org/10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raschke, E. A., and P. W. Stackhouse Jr., 2011: GEWEX radiation flux assessment status and early results. GEWEX News, No. 21, International GEWEX Project Office, Silver Spring, MD, 4–5, https://www.gewex.org/gewex-content/files_mf/1432209318Feb2011.pdf.

  • Reichle, R. H., and Q. Liu, 2014: Observation-corrected precipitation estimates in GEOS-5. Technical Report Series on Global Modelling and Data Assimilation, Vol. 35, NASA Tech. Rep. NASA/TM-2014-104606, 24 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150000725.pdf.

  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rui, H., and H. Beaudoing, 2018: README Document for NASA GLDAS version 2 data products. GES DISC., 22 pp., https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS/README_GLDAS2.pdf.

  • Saha, S., and Coauthors, 2010: NCEP CFSR Monthly Products, January 1979 to December 2010. NCAR Computational and Information Systems Laboratory Research Data Archive, accessed 16 May 2016, https://doi.org/10.5065/D6DN438J.

    • Crossref
    • Export Citation
  • Shi, Q., and S. Liang, 2014: Surface-sensible and latent heat fluxes over the Tibetan Plateau from ground measurements, reanalysis, and satellite data. Atmos. Chem. Phys., 14, 56595677, https://doi.org/10.5194/acp-14-5659-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, C., B. Huang, L. Ke, and Q. Ye, 2016: Precipitation variability in High Mountain Asia from multiple datasets and implication for water balance analysis in large lake basins. Global Planet. Change, 145, 2029, https://doi.org/10.1016/j.gloplacha.2016.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SRB Science Team, 2010: NASA/GEWAX SRB, Release 3.0. NASA Atmospheric Science Data Center, accessed 13 November 2015, https://doi.org/10.5067/SRB/REL3.0_SW_MONTHLY_UTC_NC_L3.

    • Crossref
    • Export Citation
  • SRB Science Team, 2012: NASA/GEWAX SRB, Release 3.1. NASA Atmospheric Science Data Center, accessed 13 November 2015, https://doi.org/10.5067/SRB/REL3.1_LW_MONTHLY_NC_L2.

    • Crossref
    • Export Citation
  • Stackhouse, P. W., Jr., S. K. Gupta, S. J. Cox, T. Zhang, J. C. Mikovitz, and L. M. Hinkelman, 2011: The NASA/GEWEX surface radiation budget release 3.0: 24.5-year dataset. GEWEX News, No. 21, International GEWEX Project Office, Silver Spring, MD, 10–12, https://www.gewex.org/gewex-content/files_mf/1432209318Feb2011.pdf.

  • Tong, K., F. Su, D. Yang, L. Zhang, and Z. Hao, 2014: Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. Int. J. Climatol., 34, 265285, https://doi.org/10.1002/joc.3682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veettil, B. K., 2012: A remote sensing approach for monitoring debris-covered glaciers in the high altitude Karakoram Himalayas. Int. J. Geomat. Geosci., 2, 833841.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Bao, B. Hoskins, G. Wu, and Y. Liu, 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35, L14702, https://doi.org/10.1029/2008GL034330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., S. Zhou, and A. Duan, 2012: Trend in the atmospheric heat source over the central and eastern Tibetan Plateau during recent decades: Comparison of observations and reanalysis data. Chin. Sci. Bull., 57, 548557, https://doi.org/10.1007/s11434-011-4838-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., A. Duan, and G. Wu, 2014: Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall anomaly in East China: Case studies using the WRF model. Climate Dyn., 42, 28852898, https://doi.org/10.1007/s00382-013-1800-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeor., 8, 770789, https://doi.org/10.1175/JHM609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G., B. He, A. Duan, Y. Liu, and W. Yu, 2017: Formation and variation of the atmospheric heat source over the Tibetan Plateau and its climate effects. Adv. Atmos. Sci., 34, 11691184, https://doi.org/10.1007/s00376-017-7014-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, H., K. Yang, X. Niu, and Y. Chen, 2015: The role of cloud height and warming in the decadal weakening of atmospheric heat source over the Tibetan Plateau. Sci. China Earth Sci., 58, 395403, https://doi.org/10.1007/s11430-014-4973-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., J. Li, Z. Jiang, and T. Ma, 2012: Modulation of the Tibetan Plateau snow cover on the ENSO teleconnections: From the East Asian summer monsoon perspective. J. Climate, 25, 24812489, https://doi.org/10.1175/JCLI-D-11-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., P. Zhang, H. Chen, and Y. Li, 2016: Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency? Climate Dyn., 46, 34053417, https://doi.org/10.1007/s00382-015-2775-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Z., and A. Duan, 2016: Impacts of Tibetan Plateau snow cover on the interannual variability of the East Asia summer monsoon. J. Climate, 29, 84958514, https://doi.org/10.1175/JCLI-D-16-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Z., W. Shi, and P. Yang, 2015: Possible causes of the interdecadal transition of the Somali jet around the late 1990s. J. Meteor. Res., 29, 214227, https://doi.org/10.1007/s13351-015-4103-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: CMAP. NOAA/OAR/ESRL PSD, accessed 25 September 2017, https://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html.

  • Xu, W., L. Ma, M. Ma, H. Zhang, and W. Yuan, 2017: Spatial–temporal variability of snow cover and depth in the Qinghai–Tibetan Plateau. J. Climate, 30, 15211533, https://doi.org/10.1175/JCLI-D-15-0732.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., C. Lu, Y. Ding, X. Shi, Y. Guo, and W. Zhu, 2013: What is the relationship between China summer precipitation and the change of apparent heat source over the Tibetan Plateau? Atmos. Sci. Lett., 14, 227234, https://doi.org/10.1002/asl2.444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., C. Li, and Z. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70, 319351, https://doi.org/10.2151/jmsj1965.70.1B_319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., T. Koike, P. Stackhouse, C. Mikovitz, and S. J. Cox, 2006: An assessment of satellite surface radiation products for highlands with Tibet instrumental data. Geophys. Res. Lett., 33, L22403, https://doi.org/10.1029/2006GL027640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., X. Guo, and B. Wu, 2011a: Recent trends in surface sensible heat flux on the Tibetan Plateau. Sci. China Earth Sci., 54, 1928, https://doi.org/10.1007/s11430-010-4036-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., X. Guo, J. He, J. Qin, and T. Koike, 2011b: On the climatology and trend of the atmospheric heat source over the Tibetan Plateau: An experiments-supported revisit. J. Climate, 24, 15251541, https://doi.org/10.1175/2010JCLI3848.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., H. Wu, J. Qin, C. Lin, W. Tang, and Y. Chen, 2014: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet. Change, 112, 7991, https://doi.org/10.1016/j.gloplacha.2013.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE. Subset used: Monsoon Asia Precipitation (APHRO_MA), APHRODITE’s Water Resources, accessed 10 November 2015, http://www.chikyu.ac.jp/precip/english/products.html.

  • Ye, D., and Y. Gao, 1979: The Meteorology of the Qinghai-Xizang (Tibet) Plateau (in Chinese). Science Press, 278 pp.

  • You, Q., J. Min, W. Zhang, N. Pepin, and S. Kang, 2015: Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Climate Dyn., 45, 791806, https://doi.org/10.1007/s00382-014-2310-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., H. Körnich, and K. Holmgren, 2013: How well do reanalyses represent the southern African precipitation? Climate Dyn., 40, 951962, https://doi.org/10.1007/s00382-012-1423-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, https://doi.org/10.1029/2003JD004457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., W. B. Rossow, and P. W. Stackhouse, 2006: Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the near-surface atmosphere. J. Geophys. Res., 111, D13106, https://doi.org/10.1029/2005JD006873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., W. B. Rossow, and P. W. Stackhouse, 2007: Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the surface. J. Geophys. Res., 112, D01102, https://doi.org/10.1029/2005JD007008.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-S., T. Li, and B. Wang, 2004: Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon. J. Climate, 17, 27802793, https://doi.org/10.1175/1520-0442(2004)017<2780:DCOTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, P., and L. Chen, 2001: Interannual variability of atmospheric heat source/sink over the Qinghai–Xizang (Tibetan) Plateau and its relation to circulation. Adv. Atmos. Sci., 18, 106116, https://doi.org/10.1007/s00376-001-0007-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., P. Zhao, J. Chen, L. Chen, and W. Li, 2009: Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate. Sci. China, 52D, 16791693, https://doi.org/10.1007/s11430-009-0194-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, L., G. Huang, G. Fan, X. Qu, G. Zhao, and W. Hua, 2017: Evolution of surface sensible heat over the Tibetan Plateau under the recent global warming hiatus. Adv. Atmos. Sci., 34, 12491262, https://doi.org/10.1007/s00376-017-6298-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, X., Y. Liu, and G. Wu, 2012: An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets. Sci. China Earth Sci., 55, 779786, https://doi.org/10.1007/s11430-012-4379-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 478 159 13
PDF Downloads 958 126 9